Items where Subject is "Subjects > Nutrition"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Title | Creators | Item Type
Jump to: Article
Number of items at this level: 6.

Article

Article Subjects > Nutrition Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Age-related macular degeneration (AMD) is a serious degenerative disease affecting the eyes, and is the main cause of severe vision loss among people >55 years of age in developed countries. Its onset and progression have been associated with several genetic and lifestyle factors, with diet appearing to play a pivotal role in the latter. In particular, dietary eating patterns rich in plant foods have been shown to lower the risk of developing the disease, and to decrease the odds of progressing to more advanced stages in individuals already burdened with early AMD. We systematically reviewed the literature to analyse the relationship between the adherence to a Mediterranean diet, a mainly plant-based dietary pattern, and the onset/progression of AMD. Eight human observational studies were analysed. Despite some differences, they consistently indicate that higher adherence to a Mediterranean eating pattern lowers the odds of developing AMD and decreases the risk of progression to more advanced stages of the disease, establishing the way for preventative measures emphasizing dietary patterns rich in plant-foods metadata Gastaldello, Annalisa and Giampieri, Francesca and Quiles, José L. and Navarro-Hortal, María D. and Aparicio Obregón, Silvia and García Villena, Eduardo and Tutusaus, Kilian and De Giuseppe, Rachele and Grosso, Giuseppe and Cianciosi, Danila and Forbes-Hernández, Tamara Y. and Nabavi, Seyed M. and Battino, Maurizio mail UNSPECIFIED, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, UNSPECIFIED, silvia.aparicio@uneatlantico.es, eduardo.garcia@uneatlantico.es, kilian.tutusaus@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, maurizio.battino@uneatlantico.es (2022) Adherence to the Mediterranean-Style Eating Pattern and Macular Degeneration: A Systematic Review of Observational Studies. Nutrients, 14 (10). p. 2028. ISSN 2072-6643

Article Subjects > Nutrition Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés There is growing evidence that Alzheimer’s disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects metadata Romero-Márquez, Jose M. and Navarro-Hortal, María D. and Orantes, Francisco J. and Esteban-Muñoz, Adelaida and Mazas Pérez-Oleaga, Cristina and Battino, Maurizio and Sánchez-González, Cristina and Rivas-García, Lorenzo and Giampieri, Francesca and Quiles, José L. and Forbes-Hernandez, Tamara Y. mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, tamara.forbes@unini.edu.mx (2023) In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain. Antioxidants, 12 (2). p. 404. ISSN 2076-3921

Article Subjects > Nutrition Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Alzheimer’s Disease (AD) is the cause of around 60–70% of global cases of dementia and approximately 50 million people have been reported to suffer this disease worldwide. The leaves of olive trees (Olea europaea) are the most abundant by-products of the olive grove industry. These by-products have been highlighted due to the wide variety of bioactive compounds such as oleuropein (OLE) and hydroxytyrosol (HT) with demonstrated medicinal properties to fight AD. In particular, the olive leaf (OL), OLE, and HT reduced not only amyloid-β formation but also neurofibrillary tangles formation through amyloid protein precursor processing modulation. Although the isolated olive phytochemicals exerted lower cholinesterase inhibitory activity, OL demonstrated high inhibitory activity in the cholinergic tests evaluated. The mechanisms underlying these protective effects may be associated with decreased neuroinflammation and oxidative stress via NF-κB and Nrf2 modulation, respectively. Despite the limited research, evidence indicates that OL consumption promotes autophagy and restores loss of proteostasis, which was reflected in lower toxic protein aggregation in AD models. Therefore, olive phytochemicals may be a promising tool as an adjuvant in the treatment of AD. metadata Romero-Márquez, Jose M. and Forbes-Hernández, Tamara Y. and Navarro-Hortal, María D. and Quirantes-Piné, Rosa and Grosso, Giuseppe and Giampieri, Francesca and Lipari, Vivian and Sánchez-González, Cristina and Battino, Maurizio and Quiles, José L. mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, vivian.lipari@uneatlantico.es, UNSPECIFIED, maurizio.battino@uneatlantico.es, jose.quiles@uneatlantico.es (2023) Molecular Mechanisms of the Protective Effects of Olive Leaf Polyphenols against Alzheimer’s Disease. International Journal of Molecular Sciences, 24 (5). p. 4353. ISSN 1422-0067

Article Subjects > Nutrition Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Inflammatory bowel disease (IBD) patients are at substantially higher risk of colorectal cancer (CRC) and IBD-associated CRC accounts for roughly 10-15% of the annual mortality in IBD patients. IBD-related CRC also affects younger patients if compared with sporadic CRC, with a 5-year survival rate of 50%. Regardless of medical therapies, the persistent inflammation state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier disfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. In addition, in the last years, results from broad epidemiological and experimental studies have associated certain foods or nutritional patterns with the risk of colorectal neoplasia. Here we review the possible role of nutrition in the prevention of IBD-related CRC, focusing specifically on human studies. In conclusion it emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, Omega-3 PUFAs, and low amount of animal proteins, processed foods and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC. metadata Cassotta, Manuela and Cianciosi, Danila and De Giuseppe, Rachele and Navarro-Hortal, Maria Dolores and Diaz, Yasmany Armas and Forbes-Hernández, Tamara Yuliett and Tutusaus, Kilian and Pascual Barrera, Alina Eugenia and Grosso, Giuseppe and Xiao, Jianbo and Battino, Maurizio and Giampieri, Francesca mail manucassotta@gmail.com, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, kilian.tutusaus@uneatlantico.es, alina.pascual@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, maurizio.battino@uneatlantico.es, francesca.giampieri@uneatlantico.es (2023) Possible role of nutrition in the prevention of Inflammatory Bowel Disease-related colorectal cancer: a focus on human studies. Nutrition. p. 111980. ISSN 08999007

Article Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Cactus has been used in traditional folk medicine because of its role in treating a number of diseases and conditions. Prickly pear fruit is an excellent source of secondary metabolites (i.e., betalains, flavonoids, and ascorbic acid) with health-promoting properties against many common human diseases, including diabetes, hypertension, hypercholesterolemia, rheumatic pain, gastric mucosa diseases and asthma. In addition, prickly pears are potential candidates for the development of low-cost functional foods because they grow with low water requirements in arid regions of the world. This review describes the main bioactive compounds found in this fruit and shows the in vitro and some clinical studies about the fruit of most important cactus (Opuntia ficus-indica) and its relationship with some chronic diseases. Even though a lot of effort have been done to study the relationship between this fruit and the human health, more studies on Opuntia ficus-indica could help better understand its pharmacological mechanism of action to provide clear scientific evidence to explain its traditional uses, and to identify its therapeutic potential in other diseases. metadata Armas Diaz, Yasmany and Machì, Michele and Salinari, Alessia and Mazas Pérez-Oleaga, Cristina and Martínez López, Nohora Milena and Briones Urbano, Mercedes and Cianciosi, Danila mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, mercedes.briones@uneatlantico.es, UNSPECIFIED (2022) Prickly pear fruits from "Opuntia ficus-indica" varieties as a source of potential bioactive compounds in the Mediterranean diet. Mediterranean Journal of Nutrition and Metabolism, 15 (4). pp. 581-592. ISSN 1973798X

Article Subjects > Biomedicine
Subjects > Engineering
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics. metadata Ferreras, Antonio and Sumalla Cano, Sandra and Martínez-Licort, Rosmeri and Elío Pascual, Iñaki and Tutusaus, Kilian and Prola, Thomas and Vidal Mazón, Juan Luis and Sahelices, Benjamín and de la Torre Díez, Isabel mail UNSPECIFIED, sandra.sumalla@uneatlantico.es, UNSPECIFIED, inaki.elio@uneatlantico.es, kilian.tutusaus@uneatlantico.es, thomas.prola@uneatlantico.es, juanluis.vidal@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2023) Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight. Journal of Medical Systems, 47 (1). ISSN 1573-689X

This list was generated on Thu Sep 21 23:40:18 2023 UTC.

<a class="ep_document_link" href="/8725/1/diagnostics-13-02871.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Voxel Extraction and Multiclass Classification of Identified Brain Regions across Various Stages of Alzheimer’s Disease Using Machine Learning Approaches

This study sought to investigate how different brain regions are affected by Alzheimer’s disease (AD) at various phases of the disease, using independent component analysis (ICA). The study examines six regions in the mild cognitive impairment (MCI) stage, four in the early stage of Alzheimer’s disease (AD), six in the moderate stage, and six in the severe stage. The precuneus, cuneus, middle frontal gyri, calcarine cortex, superior medial frontal gyri, and superior frontal gyri were the areas impacted at all phases. A general linear model (GLM) is used to extract the voxels of the previously mentioned regions. The resting fMRI data for 18 AD patients who had advanced from MCI to stage 3 of the disease were obtained from the ADNI public source database. The subjects include eight women and ten men. The voxel dataset is used to train and test ten machine learning algorithms to categorize the MCI, mild, moderate, and severe stages of Alzheimer’s disease. The accuracy, recall, precision, and F1 score were used as conventional scoring measures to evaluate the classification outcomes. AdaBoost fared better than the other algorithms and obtained a phenomenal accuracy of 98.61%, precision of 99.00%, and recall and F1 scores of 98.00% each.

Producción Científica

Samra Shahzadi mail , Naveed Anwer Butt mail , Muhammad Usman Sana mail , Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Isabel de la Torre Díez mail , Imran Ashraf mail ,

Shahzadi

<a href="/8726/1/sensors-23-07710-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants

Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.

Producción Científica

Arooj Khan mail , Imran Shafi mail , Sajid Gul Khawaja mail , Isabel de la Torre Díez mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Juan Castanedo Galán mail juan.castanedo@uneatlantico.es, Imran Ashraf mail ,

Khan

<a href="/8760/1/diagnostics-13-02881.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Empowering Lower Limb Disorder Identification through PoseNet and Artificial Intelligence

A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.

Producción Científica

Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Dzul Lopez mail luis.dzul@unini.edu.mx, Isabel de la Torre Diez mail , Furqan Rustam mail , Sandra Dudley mail ,

Siddiqui

<a href="/8800/1/Real_Word_Spelling_Error_Detection_and_Correction_for_Urdu_Language.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Real Word Spelling Error Detection and Correction for Urdu Language

Non-word and real-word errors are generally two types of spelling errors. Non-word errors are misspelled words that are nonexistent in the lexicon while real-word errors are misspelled words that exist in the lexicon but are used out of context in a sentence. Lexicon-based lookup approach is widely used for non-word errors but it is incapable of handling real-word errors as they require contextual information. Contrary to the English language, real-word error detection and correction for low-resourced languages like Urdu is an unexplored area. This paper presents a real-word spelling error detection and correction approach for the Urdu language. We develop an extensive lexicon of 593,738 words and use this lexicon to develop a dataset for real-word errors comprising 125562 sentences and 2,552,735 words. Based on the developed lexicon and dataset, we then develop a contextual spell checker that detects and corrects real-word errors. For the real-word error detection phase, word-gram features are used along with five machine learning classifiers, achieving a precision, recall, and F1-score of 0.84,0.79, and 0.81 respectively. We also test the proposed approach with a 40% error density. For real-word error correction, the Damerau-Levenshtein distance is used along with the n-gram model for further ranking of the suggested candidate words, achieving an accuracy of up to 83.67%.

Producción Científica

Romila Aziz mail , Muhammad Waqas Anwar mail , Muhammad Hasan Jamal mail , Usama Ijaz Bajwa mail , Ángel Gabriel Kuc Castilla mail , Carlos Uc-Rios mail carlos.uc@unini.edu.mx, Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Imran Ashraf mail ,

Aziz

<a class="ep_document_link" href="/8801/1/Software_Cost_and_Effort_Estimation_Current_Approaches_and_Future_Trends.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Software Cost and Effort Estimation: Current Approaches and Future Trends

Software cost and effort estimation is one of the most significant tasks in the area of software engineering. Research conducted in this field has been evolving with new techniques that necessitate periodic comparative analyses. Software project success largely depends on accurate software cost estimation as it gives an idea of the challenges and risks involved in the development. The great diversity of ML and Non-ML techniques has generated a comparison and progressed into the integration of these techniques. Based on varying advantages it has become imperative to work out preferred estimation techniques to improve the project development process. This study aims to present a systematic literature review (SLR) to investigate the trends of the articles published in the recent one and a half decades and to propose a way forward. This systematic literature review has proposed a three-stage approach to plan (Tollgate approach), conduct (Likert type scale), and report the results from five renowned digital libraries. For the selected 52 articles, artificial neural network model (ANN) and constructive cost model (COCOMO) based approaches have been the favored techniques. The mean magnitude of relative error (MMRE) has been the preferred accuracy metric, software engineering, and project management are the most relevant fields, and the promise repository has been identified as the widely accessed database. This review is likely to be of value for the development, cost, and effort estimations.

Producción Científica

Chaudhary Hamza Rashid mail , Imran Shafi mail , Jamil Ahmad mail , Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Isabel De La Torre Diez mail , Imran Ashraf mail ,

Rashid