Browse by Acceso

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Title | Creators | Item Type | No Grouping
Jump to: 2023 | 2022 | 2021 | 2020 | 2017
Number of items: 11.

2023

Article Subjects > Biomedicine
Subjects > Engineering
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics. metadata Ferreras, Antonio and Sumalla Cano, Sandra and Martínez-Licort, Rosmeri and Elío Pascual, Iñaki and Tutusaus, Kilian and Prola, Thomas and Vidal Mazón, Juan Luis and Sahelices, Benjamín and de la Torre Díez, Isabel mail UNSPECIFIED, sandra.sumalla@uneatlantico.es, UNSPECIFIED, inaki.elio@uneatlantico.es, kilian.tutusaus@uneatlantico.es, thomas.prola@uneatlantico.es, juanluis.vidal@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2023) Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight. Journal of Medical Systems, 47 (1). ISSN 1573-689X

2022

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Agriculture is an important sector that plays an essential role in the economic development of a country. Each year farmers face numerous challenges in producing good quality crops. One of the major reasons behind the failure of the harvest is the use of unscientific agricultural practices. Moreover, every year enormous crop loss is encountered either by pests, specific diseases, or natural disasters. It raises a strong concern to employ sustainable advanced technologies to address agriculture-related issues. In this paper, a sustainable real-time crop disease detection and prevention system, called CROPCARE is proposed. The system integrates mobile vision, Internet of Things (IoT), and Google Cloud services for sustainable growth of crops. The primary function of the proposed intelligent system is to detect crop diseases through the CROPCARE -mobile application. It uses Super-Resolution Convolution Network (SRCNN) and the pretrained model MobileNet-V2 to generate a decision model trained over various diseases. To maintain sustainability, the mobile app is integrated with IoT sensors and Google Cloud services. The proposed system also provides recommendations that help farmers know about current soil conditions, weather conditions, disease prevention methods, etc. It supports both Hindi and English dictionaries for the convenience of the farmers. The proposed approach is validated by using the PlantVillage dataset. The obtained results confirm the performance strength of the proposed system. metadata Garg, Garima and Gupta, Shivam and Mishra, Preeti and Vidyarthi, Ankit and Singh, Aman and Ali, Asmaa mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED (2022) CROPCARE: An Intelligent Real-Time Sustainable IoT System for Crop Disease Detection Using Mobile Vision. IEEE Internet of Things Journal. p. 1. ISSN 2372-2541

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés The Information Centric Networking (ICN) is a future internet architecture to support efficient content distribution in a vehicular environment. In-network caching in ICN provides a realistic solution for vehicular communication due to storage of content replicas inside network vehicles. However, the challenge still exists while caching content replicas in resource constraint vehicles ( such as limited power and cache capacity) to minimize the communication latency. To address the above mentioned challenge, this paper proposes EPC - an ICN based Energy efficient Placement of Content chunk that fits well in a vehicular environment. The proposed resource management strategy mainly aims to reduce the content fetching delay by caching content replicas towards the network edge router. The EPC strategy decides on placement of content chunks on each vehicle by jointly considering residual power of current vehicle, local popularity of content, and caching gain. The EPC supports efficient utilization of network available resources by allowing only vehicles with their residual power greater than threshold to perform chunk caching and hence, further offers reduced content duplication in the whole network. The effectiveness of the proposed scheme is evaluated in Icarus- an ICN simulator for analyzing the performance of ICN caching and routing strategies. The EPC outperforms various state of the art caching strategies approximately by 30% when gets evaluated in terms of offered cache hit ratio, content retrieval delay, and the average number of hops utilized for fetching the requested content. metadata Gupta, Divya and Rani, Shalli and Singh, Aman and Rodrigues, Joel J. P. C. mail UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED (2022) ICN Based Efficient Content Caching Scheme for Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems. pp. 1-9. ISSN 1524-9050

Article Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Cactus has been used in traditional folk medicine because of its role in treating a number of diseases and conditions. Prickly pear fruit is an excellent source of secondary metabolites (i.e., betalains, flavonoids, and ascorbic acid) with health-promoting properties against many common human diseases, including diabetes, hypertension, hypercholesterolemia, rheumatic pain, gastric mucosa diseases and asthma. In addition, prickly pears are potential candidates for the development of low-cost functional foods because they grow with low water requirements in arid regions of the world. This review describes the main bioactive compounds found in this fruit and shows the in vitro and some clinical studies about the fruit of most important cactus (Opuntia ficus-indica) and its relationship with some chronic diseases. Even though a lot of effort have been done to study the relationship between this fruit and the human health, more studies on Opuntia ficus-indica could help better understand its pharmacological mechanism of action to provide clear scientific evidence to explain its traditional uses, and to identify its therapeutic potential in other diseases. metadata Armas Diaz, Yasmany and Machì, Michele and Salinari, Alessia and Mazas Pérez-Oleaga, Cristina and Martínez López, Nohora Milena and Briones Urbano, Mercedes and Cianciosi, Danila mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, mercedes.briones@uneatlantico.es, UNSPECIFIED (2022) Prickly pear fruits from "Opuntia ficus-indica" varieties as a source of potential bioactive compounds in the Mediterranean diet. Mediterranean Journal of Nutrition and Metabolism, 15 (4). pp. 581-592. ISSN 1973798X

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Network slicing is expected to be critical in the deployment of 5G mobile networks and systems. On top of a single physical infrastructure, the technology enables operators to operate several virtual networks. As the 5G commercialization was recently deployed, network function virtualization (NFV) and software-defined networking (SDN) will drive network slicing. In this article, we present an overview of SDN in 5G, and the motivation, role, and market growth of network slicing. We then discuss usage scenarios of SDN in network slicing for 5G. The proposed architecture comprises the three usage scenarios: enhanced mobile broadband (eMBB) provides the support to varying types of services used; ultra-reliable low-latency communications (URLLC) provides a certain class of applications such as higher bandwidth, high definition video streaming, mobile TV, and so on; massive machine type communications (mMTC) throws light on the types of services used to connect huge numbers of devices. Finally, challenges and solutions based on network slicing in 5G are presented. metadata Babbar, Himanshi and Rani, Shalli and AlZubi, Ahmad Ali and Singh, Aman and Nasser, Nidal and Ali, Asmaa mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) Role of Network Slicing in Software Defined Networking for 5G: Use Cases and Future Directions. IEEE Wireless Communications, 29 (1). pp. 112-118. ISSN 1536-1284

2021

Other Subjects > Engineering Europe University of Atlantic > Research > Projects I+D+I
Fundación Universitaria Internacional de Colombia > Research > Projects I+D+I
Ibero-american International University > Research > Projects I+D+I
Ibero-american International University > Research > Projects I+D+I
Universidad Internacional do Cuanza > Research > Projects I+D+I
Cerrado Español "La actividad de I+D que se propone se orienta a desarrollar un módulo informático que permita la gestión indexada del material audiovisual que puede complementar al contenido en las revistas digitales. Además, se crea un sistema de métricas empleando tecnologías de inteligencia de negocio (business intelligence). Los objetivos específicos de la actividad de I+D son: 1. Definir un estándar adecuado para definir los metadatos relacionados con recursos audiovisuales contenidos y gestionados por una plataforma digital de una revista científica o editorial. 2. Desarrollar una solución para crear un canal de consulta de recursos audiovisuales (artículos y revistas) contenidos en una plataforma digital. 3. Construir un prototipo experimental que incluya la funcionalidad de la gestión indexada del recurso audiovisual. 4. Proponer un sistema de métricas empleando tecnologías relacionadas con la inteligencia de negocio (business intelligence) a partir de las estadísticas que se generan en el sistema. " metadata , (MLS) mail mls@devnull.funiber.org (2021) Desarrollo de un prototipo digital para la gestión de recursos audiovisuales. Repositorio de la Universidad. (Unpublished)

Article Subjects > Psychology Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Many earlier studies conducted on sports betting and addiction have examined sports betting in the context of gambling and have not taken into account the specific motivations of sports betting. Therefore, the effects of motivational elements of sports betting on sports betting addiction risk are unknown. The aim of the present study was to examine the effects of motivation factors specific to sports betting on sports betting addiction. Accordingly, three linked studies were conducted. Firstly, to determine sports betting motivations “Sports Betting Motivation Scale (SBMS)” developed and validated. Secondly, to determine the risks of sports betting addiction “Problem Sports Betting Severity Index (PSBSI)” was adapted from Problem Gambling Severity Index (PGSI). Finally, the third study examined effects of the sports betting motivations on sports betting addiction risk. Study one (n=281), study two comprised (n=230), and the final study comprised (n=643) sports fans who bet on sports regularly for 12 months with different motivations. The findings demonstrate that the SBMS appears to be a reliable and valid instrument for assessing sports betting motivations. Also, the findings provided PSBSI validity for the use of the Turkish and sports betting adapted version of PGSI. As a result of the main research, “make money,” “socialization,” and “being in the game” motivations were found to be positive predictors of sports betting addiction risk, while “fun” motivation was a negative predictor. The motivations “recreation/escape,” “knowledge of the game,” and “interest in sport” were found not to be significant predictors of the risk of sports betting addiction. metadata Gökce Yüce, Sevda and Yüce, Arif and Katırcı, Hakan and Nogueira-López, Abel and González-Hernández, Juan mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, abel.nogueira@uneatlantico.es, UNSPECIFIED (2021) Effects of Sports Betting Motivations on Sports Betting Addiction in a Turkish Sample. International Journal of Mental Health and Addiction. ISSN 1557-1874

Article Subjects > Psychology Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés In recent decades, perfectionism has generated growing interest from the scientific community in understanding exercise addiction, due to the explicative contributions offered its characteristics that can make individuals more susceptible to unhealthy and compulsive exercise. There have been limited studies of such constructions in sports contexts. With the purpose of identifying the most relevant evidence on the constructs in sports contexts, the main links between perfectionism and exercise addiction in athletes were described. Taking into account the principles established by the PRISMA and AMSTAR statements for the qualitative and quantitative description of findings in systematic reviews, a compendium of original articles in English, French and Spanish published on the Web of Science electronic platforms and databases is presented, Scopus, ProQuest, MEDLINE and EBSCO-HOST, and included major resources such as PSY Articles, PsycINFO, LWW, ERIC, SportDISCUS, PubMed, ERIC, Dialnet, PubMed, ISOC, the Cochrane Library and Google Scholar. Of the 754 articles identified, only 22 met the established inclusion criteria. Finally, the relationship between exercise addiction and perfectionism, and the risk function of certain personality traits, such as narcissism, in this association is confirmed. metadata González-Hernández, J. and Nogueira-López, Abel and Zangeneh, M. and López-Mora, C. mail UNSPECIFIED, abel.nogueira@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2021) Exercise Addiction and Perfectionism, Joint in the Same Path? A Systematic Review. International Journal of Mental Health and Addiction. ISSN 1557-1874

2020

Article Subjects > Biomedicine Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice. metadata Pistollato, Francesca and Forbes-Hernández, Tamara Y. and Calderón Iglesias, Rubén and Ruiz Salces, Roberto and Elexpuru Zabaleta, Maria and Dominguez Azpíroz, Irma and Cianciosi, Danila and Quiles, José L. and Giampieri, Francesca and Battino, Maurizio mail francesca.pistollato@uneatlantico.es, UNSPECIFIED, ruben.calderon@uneatlantico.es, roberto.ruiz@uneatlantico.es, maria.elexpuru@uneatlantico.es, irma.dominguez@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED (2020) Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: Possible implications for cancer treatment. Seminars in Cancer Biology. ISSN 1044-579X

2017

Other Subjects > Engineering Europe University of Atlantic > Research > Projects I+D+I
Fundación Universitaria Internacional de Colombia > Research > Projects I+D+I
Ibero-american International University > Research > Projects I+D+I
Ibero-american International University > Research > Projects I+D+I
Universidad Internacional do Cuanza > Research > Projects I+D+I
Cerrado Español El objetivo principal del proyecto es el desarrollo de un conjunto de tecnologías digitales estandarizables que permitan a la empresa crear una API (Application Programming Interface) de interconexión entre una revista científica y entidades externas, como pueden ser bibliotecas universitarias y otros intermediarios de recursos de información. En síntesis, las principales innovaciones del proyecto son: la creación de un formato estándar de intercambio de datos para los artículos científicos, monetizar la difusión de contenidos científicos en un formato B2B, la implementación de una nueva funcionalidad para la plataforma OJS inexistente en el mercado, así como facilitar el intercambio de datos y acceso a la información entre plataformas. metadata UNSPECIFIED mail UNSPECIFIED (2017) TICartículo: Tecnologías de intercambio de datos de artículos científicos. Repositorio de la Universidad.

Other Subjects > Teaching Europe University of Atlantic > Research > Projects I+D+I
Fundación Universitaria Internacional de Colombia > Research > Projects I+D+I
Ibero-american International University > Research > Projects I+D+I
Ibero-american International University > Research > Projects I+D+I
Universidad Internacional do Cuanza > Research > Projects I+D+I
Cerrado Inglés El e-learning como modalidad de enseñanza-aprendizaje introduce especificidades en cuanto a las funciones y competencias docentes: nuevos entornos de aprendizaje suponen nuevos enfoques para entenderlos, diseñarlos y gestionarlos. La empresa MLSJOURNALS pretende desarrollar una nueva línea de servicios para Universidades dentro del campo de las competencias docentes para la cual requiere de un profesional del campo de la psicología y la docencia. La presente actividad de I+D aporta a la empresa un conocimiento sistematizado y basado en la evidencia, para describir el perfil de competencias docentes para la formación universitaria en entornos virtuales de aprendizaje. Con ello, la empresa pretende aportar un nuevo servicio que dé respuesta a esta necesidad en el mercado universitario, enfocándose a dos objetivos principales: 1. Describir el conjunto de competencias - que integran conocimientos, habilidades y actitudes- que deben reunir los profesores universitarios para la docencia a través de Entornos Virtuales de Aprendizaje. 2. Descubrir la relación existente entre el perfil competencial de los profesores y los resultados logrados en el proceso de enseñanza – aprendizaje. metadata UNSPECIFIED mail UNSPECIFIED (2017) VIRTUALAP: Competencias docentes para la formación universitaria en un entorno virtual de aprendizaje. Repositorio de la Universidad.

This list was generated on Sat Feb 4 23:40:56 2023 UTC.

<a class="ep_document_link" href="/5397/1/drones-07-00031-v4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Deep Learning-Based Real Time Defect Detection for Optimization of Aircraft Manufacturing and Control Performance

Monitoring tool conditions and sub-assemblies before final integration is essential to reducing processing failures and improving production quality for manufacturing setups. This research study proposes a real-time deep learning-based framework for identifying faulty components due to malfunctioning at different manufacturing stages in the aerospace industry. It uses a convolutional neural network (CNN) to recognize and classify intermediate abnormal states in a single manufacturing process. The manufacturing process for aircraft factory products comprises different phases; analyzing the components after the integration is labor-intensive and time-consuming, which often puts the company’s stake at high risk. To overcome these challenges, the proposed AI-based system can perform inspection and defect detection and alleviate the probability of components’ needing to be re-manufacturing after being assembled. In addition, it analyses the impact value, i.e., rework delays and costs, of manufacturing processes using a statistical process control tool on real-time data for various manufactured components. Defects are detected and classified using the CNN and teachable machine in the single manufacturing process during the initial stage prior to assembling the components. The results show the significance of the proposed approach in improving operational cost management and reducing rework-induced delays. Ground tests are conducted to calculate the impact value followed by the air tests of the final assembled aircraft. The statistical results indicate a 52.88% and 34.32% reduction in time delays and total cost, respectively.

Producción Científica

Imran Shafi mail , Muhammad Fawad Mazhar mail , Anum Fatima mail , Roberto Marcelo Álvarez mail roberto.alvarez@uneatlantico.es, Yini Airet Miró Vera mail yini.miro@uneatlantico.es, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Imran Ashraf mail ,

Shafi

en

close

Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight

Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics.

Producción Científica

Antonio Ferreras mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Rosmeri Martínez-Licort mail , Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Thomas Prola mail thomas.prola@uneatlantico.es, Juan Luis Vidal Mazón mail juanluis.vidal@uneatlantico.es, Benjamín Sahelices mail , Isabel de la Torre Díez mail ,

Ferreras

<a href="/5470/1/education-13-00097.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Integration of Sustainable Criteria in the Development of a Proposal for an Online Postgraduate Program in the Projects Area

Regulatory dispersion and a utilitarian use of sustainability deepen the gap within the teaching–learning process and limit the introduction of sustainable criteria in organizations through projects. The objective of this research consisted in developing a sustainable and holistic educational proposal for an online postgraduate program belonging to the Universidad Europea del Atlántico (UNEATLANTICO) within the field of projects. The proposal was based on the instrumentalization of a model comprised of national and international bibliographic references, resulting in a sustainability guide with significant improvements in relation to the reference standard par excellence: ISO 26000:2010. This guide formed the basis of a sustainability management plan, which was key in the project methodology and during the development of sustainable objectives and descriptors for each of the subjects. Lastly, the entities, attributes, and cardinal relationships were established for the development of a physical model used to facilitate the management of all this information within a SQL database. The rigor when determining the educational program, as well as the subsequent analysis of results as supported by the literature review, presupposes the application of this methodology toward other multidisciplinary programs contributing to the adoption of good sustainability practices within the educational field

Producción Científica

Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Roberto Marcelo Álvarez mail roberto.alvarez@uneatlantico.es, Santiago Brie mail santiago.brie@uneatlantico.es, Yini Airet Miró Vera mail yini.miro@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es,

Gracia Villar

<a href="/5595/1/339-790-1-PB.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

pt

open

Conformidade legal no ensino superior em Angola: criação de um instrumento de gestão das obrigações legais

O quadro legal angolano para o subsistema de ensino superior cresceu significativamente desde 2009, um crescimento que tem estado a visar o aumento da transparência e da qualidade dos processos educacionais nas instituições de ensino superior (IES) angolanas. Entretanto, a qualidade do ensino superior em Angola não sofreu melhorias significativas por não se estar a cumprir escrupulosamente com o quadro legal de forma sistemática, o que tem resultado em encerramentos de cursos e instituições do ensino superior. Este artigo tem como objetivo principal desenvolver um instrumento de auto- monitorização da conformidade legal que pode ajudar as IES angolanas a tirarem mais proveito do quadro legal do ensino superior. Por intermédio de um levantamento bibliográfico das leis relevantes ao ensino superior em Angola, a identificação de obrigações legais nestas e o desenvolvimento de uma série de tabelas de verificação de conformidade, este estudo apresenta uma checklist de auto verificação da conformidade entre o funcionamento das instituições do ensino superior e o quadro legal relevante ao ensino superior em Angola. Pela utilização deste instrumento, foi possível dissecar as obrigações legais em requisitos ou critérios. Foi também possível estabelecer três graus de conformidade legal, nomeadamente: total, parcial e nenhuma. Notou-se, de igual forma, a existência de um total de 83 obrigações legais das instituições do ensino superior em Angola, sendo os regulamentos e as normas as fontes do maior número de obrigações. Destes, existem entre cinco a quinze requisitos legais por obrigação, perfazendo um volume enorme de requisitos legais com os quais as IES em Angola devem mostrar conformidade legal. A aplicação da checklist permite a gestão desse leque diverso e numeroso de requisitos específicos legais. São sugeridas várias medidas complementares ao quadro legal que devem ser implementadas em Angola com o intuito de se criar uma cultura de conformidade legal no ensino superior, promovendo-se, deste modo, a sua qualidade.

Produção científica

João Manuel da Costa Canoquena mail joao.canoquena@unic.co.ao, María Elena Castro Rodríguez mail maria.rodriguez@unic.co.ao, Yanisleidy Moreira Cabrera mail yanisleidy.cabrera@unic.co.ao,

da Costa Canoquena

<a href="/5660/1/mathematics-11-00435.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Contextual Urdu Lemmatization Using Recurrent Neural Network Models

In the field of natural language processing, machine translation is a colossally developing research area that helps humans communicate more effectively by bridging the linguistic gap. In machine translation, normalization and morphological analyses are the first and perhaps the most important modules for information retrieval (IR). To build a morphological analyzer, or to complete the normalization process, it is important to extract the correct root out of different words. Stemming and lemmatization are techniques commonly used to find the correct root words in a language. However, a few studies on IR systems for the Urdu language have shown that lemmatization is more effective than stemming due to infixes found in Urdu words. This paper presents a lemmatization algorithm based on recurrent neural network models for the Urdu language. However, lemmatization techniques for resource-scarce languages such as Urdu are not very common. The proposed model is trained and tested on two datasets, namely, the Urdu Monolingual Corpus (UMC) and the Universal Dependencies Corpus of Urdu (UDU). The datasets are lemmatized with the help of recurrent neural network models. The Word2Vec model and edit trees are used to generate semantic and syntactic embedding. Bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), bidirectional gated recurrent neural network (BiGRNN), and attention-free encoder–decoder (AFED) models are trained under defined hyperparameters. Experimental results show that the attention-free encoder-decoder model achieves an accuracy, precision, recall, and F-score of 0.96, 0.95, 0.95, and 0.95, respectively, and outperforms existing models

Producción Científica

Rabab Hafeez mail , Muhammad Waqas Anwar mail , Muhammad Hasan Jamal mail , Tayyaba Fatima mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Ernesto Bautista Thompson mail ernesto.bautista@unini.edu.mx, Imran Ashraf mail ,

Hafeez