Items where Division is "Universidad Internacional do Cuanza > Research > Software" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Title | Creators | Item Type | No Grouping
Jump to: 2025 | 2023 | 2022 | 2019 | 2017 | 2016
Number of items at this level: 10.

2025

Other Subjects > Nutrition Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Abierto Inglés, Español, Portugués Se trata de una plataforma que integra cinco bots diferentes disponibles en cinco idiomas. El bot enseña al estudiante de nutrición y dietética a realizar un proceso de exploración clínica de forma online/interactiva. Estos bots proporcionan los siguientes casos: Gastroenterología, Diabetes mellitus tipo 1, enfermedades cardiovasculares y diabetes, obesidad y enfermedades renales. Cada bot dispone de un cuestionario relacionado con el ámbito de la nutrición, y una encuesta final para conocer la experiencia del usuario. Desarrollada en el marco del proyecto E+DIETing_LAB metadata UNSPECIFIED mail UNSPECIFIED (2025) Virtual Patient (E+DIETing_LAB). Repositorio de la Universidad.

Other Subjects > Nutrition Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Abierto Inglés, Español, Portugués Una herramienta que ofrece una formación centrada en el Proceso de Atención Nutricional (PAN) y el servicio a la comunidad. Mediante videollamada las personas interesadas pueden recibir consejo dietético gratuito y unas recomendaciones de cómo mejorar su alimentación, bajo la supervisión de un profesor. Desarrollada en el marco del proyecto E+DIETing_LAB metadata UNSPECIFIED mail UNSPECIFIED (2025) Virtual nutritional clinic (E+DIETing_LAB). Repositorio de la Universidad.

2023

Other Subjects > Social Sciences Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado Inglés, Español A partir de los datos introducidos y de diferentes escenarios, la herramienta del simulador digital genera distintos retos a los estudiantes-emprendedores para poner a prueba y evaluar la parte financiera de una propuesta de emprendimiento y también ofrece recomendaciones en función de la aportación real de diferentes agentes financieros como bancos, inversores privados, business angels o plataformas de financiación colaborativa. metadata UNSPECIFIED mail UNSPECIFIED (2023) Digital Simulator for Entrepreneurial Finance (FINANCEn_LAB). Repositorio de la Universidad.

Other Subjects > Social Sciences
Subjects > Engineering
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Abierto Inglés La aplicación “Navigating Tourism in Crisis” está dirigida directamente a nuevos empresarios y con experiencia, interesados en prosperar en el difícil sector turístico, especialmente durante crisis turbulentas. Contiene enlaces a todos los recursos creados dentro de este proyecto, incluidos vídeos, podcasts, estudios de casos y cursos modulares, centrándose especialmente en la accesibilidad de los materiales de aprendizaje para aquellos que quieren evitar pasar largas horas delante de un ordenador. metadata UNSPECIFIED mail UNSPECIFIED (2023) Navigating SMEs in the tourism sector through crisis (T-CRISIS-NAV). Repositorio de la Universidad.

2022

Other Subjects > Nutrition Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Abierto Inglés, Español, Italiano, Portugués Composición Nutricional es un espacio creado para proporcionar una serie de servicios de valor añadido, ofreciendo herramientas, recursos e informaciones sobre programas de formación e investigación para profesionales e interesados en el ámbito de la nutrición y salud. metadata UNSPECIFIED mail UNSPECIFIED (2022) Composición Nutricional. Repositorio de la Universidad.

2019

Other Subjects > Engineering Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado Español El ahogamiento es una de las principales causas de muerte en el mundo, alrededor de 372.000 personas al año, siendo una cifra que se considera subestimada (OMS, 2014). En consecuencia, existe la necesidad de mejorar esta situación considerada de salud pública. El objetivo del proyecto SOSeas es el desarrollo de una herramienta de evaluación para predecir el riesgo dinámico de los ahogamientos en las playas. En los espacios acuáticos recreativos se espera que una herramienta informática pueda mejorar la gestión de la seguridad por parte de los socorristas y también la información de riesgo de ahogamiento para los bañistas. Este proyecto es una continuidad del trabajo realizado en PreventSOS. En aquel caso el foco era el desarrollo de un sistema experto para la identificación, análisis y gestión del riesgo en espacios acuáticos y el diseño de una aplicación web para el registro de incidentes y accidentes. SOSeas pretende mejorar el servicio anterior integrando el sistema de información que provee el Copernicus Marine Environment Monitoring Service (CMEMS) en todo el mundo. Se pretende conseguir suficientes datos para poder nutrir a un sistema basado en técnicas de aprendizaje-máquina. La herramienta SOSeas se desarrolla para dos tipos de usuarios : gestores de playas/socorristas y usuarios recreativos (nadadores, navegantes, surfistas...). Estos usuarios podrán acceder a las condiciones meteorológicas y oceanográficas así como a información a medida sobre las amenazas de estos entornos siempre cambiantes. metadata UNSPECIFIED mail UNSPECIFIED (2019) SOSeas: An assessment tool for predicting the dynamic risk of drowning on beaches. Repositorio de la Universidad. (Unpublished)

2017

Other Subjects > Physical Education and Sport Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Abierto Español El objetivo de esta investigación es estudiar cuál es el mecanismo de protección ante las consecuencias de la ganancia excesiva de peso en el embarazo en mujeres físicamente activas. Dados los resultados de las investigaciones realizadas acerca de la función endocrina y paracrina del músculo esquelético y la liberación de miokinas, una de las principales líneas de trabajo será estudiar la relación entre la presencia de miokinas y los beneficios obtenidos por el ejercicio físico. Se inicia el proyecto realizando una revisión del estado del arte en dos áreas en cuanto a ejercicio físico y liberación de miokinas y por otro lado, del tipo de ejercicio que más beneficios reporta en el proceso de gestación. Se lleva a cabo un ensayo clínico con el Hospital Universitario Marqués de Valdecilla para observar el efecto del ejercicio físico durante el embarazo en la liberación de miokinas y en la prevención de la ganancia excesiva de peso y sus consecuencias. Como resultado del proyecto se ha generado la página web www.embactiva.es que ha sido presentada en la primera reunión de la Red Temática Española de Ejercicio durante el Embarazo. Esta web está siendo reconocida como enlace de interés desde la Sociedad Española de Ginecología y Obstetricia (SEGO), El Hospital Universitario de Fuenlabrada, ANIS, Farmacosalud, Clínica Zuatzu, entre otros. metadata UNSPECIFIED mail UNSPECIFIED (2017) Estudio de la influencia del ejercicio físico durante el embarazo en la prevención de las consecuencias de la ganancia excesiva de peso - EFEMBARAZO. Repositorio de la Universidad. (Unpublished)

2016

Other Subjects > Engineering Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado Español Como resultado del proyecto “Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva” se ha generado una herramienta digital que permite llevar el control de las lesiones de cada deportista, así como sus constantes biomecánicas, hábitos de alimentación y estado de salud emocional de tal forma que, se cuenta con información que combina varios factores a un nivel de detalle importante y de modo personalizado para cada jugador. De este modo, se obtienen los inputs para generar el análisis estadístico que alerta sobre las probabilidades de sufrir determinada lesión. Objetivo del Proyecto: Desarrollar una herramienta que permita identificar el riesgo de lesión de un deportista, independientemente del nivel o categoría del mismo, y poder actuar en consecuencia de manera individualizada, según el período de la temporada en el que se encuentre. Financiación: Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región. Inicio: 15/12/2016 Fin: 14/12/2018 Código Externo: ID16-IN-022 metadata UNSPECIFIED mail UNSPECIFIED (2016) Nuevos mecanismos para conocer el riesgo de lesión en el deporte en diferentes tramos de la temporada deportiva. R&P (Recovery and Performance). Repositorio de la Universidad. (Unpublished)

Other Subjects > Engineering Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado Español El proyecto se centra en el desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. A partir del conocimiento que se pretende generar, la entidad espera comercializar servicios de soporte para la gestión de riesgos, la acción preventiva y comunicación de emergencias. La propuesta se orienta a crear un sistema experto en la gestión de riesgos en espacios acuáticos naturales (playas), basado por un lado en una aplicación para la evaluación de riesgos, y por otro, en un sistema de registro y análisis de sucesos y accidentes. Esta herramienta debe permitir a los responsables de la gestión de la seguridad en zonas de baño una gestión adecuada y eficaz de los recursos preventivos para minimizar la probabilidad y severidad de riesgos que puedan afectar a la integridad física o a la salud de las personas, y en consecuencia, el aumento de la seguridad acuática en las costas. Objetivo del Proyecto: Desarrollar tecnologías para la identificación de riesgos en espacios acuáticos naturales con el objeto de prevenir ahogamientos y otros incidentes en zonas de playa. Financiación: Este proyecto ha sido cofinanciado por la Sociedad de Desarrollo Regional de Cantabria (SODERCAN) y el el Programa Operativo FEDER de Cantabria en el marco del programa denominado I+C= +C 2016 (Investigación + Conocimiento= +Cantabria) que tiene por objetivo el fortalecimiento del tejido industrial de la región. Inicio: 09/12/2016 Fin: 08/12/2018 Código Externo: ID16-IN-038 metadata UNSPECIFIED mail UNSPECIFIED (2016) PREVENT-SOS: Desarrollo de tecnologías para la identificación de riesgos en espacios acuáticos naturales. Repositorio de la Universidad. (Unpublished)

Other Subjects > Engineering
Subjects > Teaching
Europe University of Atlantic > Research > Software
Fundación Universitaria Internacional de Colombia > Research > Software
Ibero-american International University > Research > Software
Ibero-american International University > Research > Software
Universidad Internacional do Cuanza > Research > Software
University of La Romana > Research > Software
Cerrado Español A pesar del gran incremento de la práctica deportiva en la sociedad occidental en los últimos años, aún hay, según fuentes de la UE, aproximadamente un 50% de la población europea que no hace ejercicio regularmente, lo que está generando un grave problema de salud, especialmente preocupante en la población infantil y juvenil. Del 50% de la población que hace deporte de forma regular, un porcentaje muy alto lo hace solo, en casa o en lugares abiertos públicos sin ninguna supervisión o control por parte de personal especializado, lo que conlleva un cierto riesgo de sufrir lesiones y/o patologías de diferente pronósticos. Ante esta situación compleja de tener la necesidad de promover la actividad física pero intentando aminorar el riesgo de la propia práctica, se propone el desarrollo de una aplicación móvil “freemium” que fomente el ejercicio y que integre una serie de tecnologías innovadoras para incorporar inteligencia artificial que aplicará sobre unos elementos de alerta que puedan generar avisos y geolocalizar al practicante de una forma rápida y eficaz. Entendemos que el desarrollo de este tipo de negocios de carácter tecnológico y de alto grado de responsabilidad social hacia la ciudadanía incrementará el tejido empresarial de Cantabria y generará nuevos puestos de trabajo estables y de alto nivel de formación. Las sinergias que se proponen con instituciones universitarias y de investigación fomentarán los ecosistemas profesionales relacionados con las nuevas tecnologías de la información, la salud y la seguridad. El objetivo de este sistema complejo que se propone es promover la actividad física segura de forma global. metadata UNSPECIFIED mail UNSPECIFIED (2016) SMART ACTIVE LIFE: Desarrollo de tecnologías inteligentes para la promoción de la vida activa y segura. Repositorio de la Universidad. (Unpublished)

<a class="ep_document_link" href="/17061/1/fspor-1-1565900.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Tensiomyography, functional movement screen and counter movement jump for the assessment of injury risk in sport: a systematic review of original studies of diagnostic tests

Background: Scientific research should be carried out to prevent sports injuries. For this purpose, new assessment technologies must be used to analyze and identify the risk factors for injury. The main objective of this systematic review was to compile, synthesize and integrate international research published in different scientific databases on Countermovement Jump (CMJ), Functional Movement Screen (FMS) and Tensiomyography (TMG) tests and technologies for the assessment of injury risk in sport. This way, this review determines the current state of the knowledge about this topic and allows a better understanding of the existing problems, making easier the development of future lines of research. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and the PICOS model until November 30, 2024, in the MEDLINE/PubMed, Web of Science (WOS), ScienceDirect, Cochrane Library, SciELO, EMBASE, SPORTDiscus and Scopus databases. The risk of bias was assessed and the PEDro scale was used to analyze methodological quality. Results: A total of 510 articles were obtained in the initial search. After inclusion and exclusion criteria, the final sample was 40 articles. These studies maintained a high standard of quality. This revealed the effects of the CMJ, FMS and TMG methods for sports injury assessment, indicating the sample population, sport modality, assessment methods, type of research design, study variables, main findings and intervention effects. Conclusions: The CMJ vertical jump allows us to evaluate the power capacity of the lower extremities, both unilaterally and bilaterally, detect neuromuscular asymmetries and evaluate fatigue. Likewise, FMS could be used to assess an athlete's basic movement patterns, mobility and postural stability. Finally, TMG is a non-invasive method to assess the contractile properties of superficial muscles, monitor the effects of training, detect muscle asymmetries, symmetries, provide information on muscle tone and evaluate fatigue. Therefore, they should be considered as assessment tests and technologies to individualize training programs and identify injury risk factors.

Producción Científica

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Julio Calleja-González mail ,

Velarde-Sotres

<a href="/17139/1/s41598-025-89266-9.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Harnessing AI forward and backward chaining with telemetry data for enhanced diagnostics and prognostics of smart devices

In the rapidly evolving landscape of artificial intelligence (AI) and the Internet of Things (IoT), the significance of device diagnostics and prognostics is paramount for guaranteeing the dependable operation and upkeep of intricate systems. The capacity to precisely diagnose and preemptively predict potential failures holds the potential to considerably amplify maintenance efficiency, diminish downtime, and optimize resource allocation. The wealth of information offered by telemetry data gathered from IoT devices presents an opportunity for diagnostics and prognostics applications. However, extracting valuable insights and making well-timed decisions from this extensive data reservoir remains a formidable challenge. This study proposes a novel AI-driven framework that integrates forward chaining and backward chaining algorithms to analyze telemetry data from IoT devices. The proposed methodology utilizes rule-based inference to detect real-time anomalies and predict potential future failures, providing a dual-layered approach for diagnostics and prognostics. The results show that the diagnostics engine using forward chaining detects real-time issues like “High Temperature” and “Low Pressure,” while the prognostics engine with backward chaining predicts potential future occurrences of these issues, enabling proactive prevention measures. The experimental results demonstrate that adopting this approach could offer valuable assistance to authorities and stakeholders. Accurate early diagnosis and prediction of potential failures have the capability to greatly improve maintenance efficiency, minimize downtime, and optimize cost.

Producción Científica

Muhammad Shoaib Farooq mail , Rizwan Pervez Mir mail , Atif Alvi mail , Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Fadwa Alrowais mail , Hanen Karamti mail , Imran Ashraf mail ,

Farooq

<a class="ep_document_link" href="/17140/1/s41598-025-90616-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization

The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance.

Producción Científica

Khadija Kanwal mail , Khawaja Tehseen Ahmad mail , Aiza Shabir mail , Li Jing mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,

Kanwal

<a href="/16734/1/nutrients-17-00577.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Mediterranean Diet and Quality of Life in Adults: A Systematic Review

Background/Objectives: With the increasing life expectancy and, as a result, the aging of the global population, there has been a rise in the prevalence of chronic conditions, which can significantly impact individuals’ health-related quality of life, a multidimensional concept that comprises an individual’s physical, mental, and social wellbeing. While a balanced, nutrient-dense diet, such as Mediterranean diet, is widely recognized for its role in chronic disease prevention, particularly in reducing the risk of cardiovascular diseases and certain cancers, its potential benefits extend beyond these well-known effects, showing promise in improving physical and mental wellbeing, and promoting health-related quality of life. Methods: A systematic search of the scientific literature in electronic databases (Pubmed/Medline) was performed to identify potentially eligible studies reporting on the relation between adherence to the Mediterranean diet and health-related quality of life, published up to December 2024. Results: A total of 28 studies were included in this systematic review, comprising 13 studies conducted among the general population and 15 studies involving various types of patients. Overall, most studies showed a significant association between adherence to the Mediterranean diet and HRQoL, with the most significant results retrieved for physical domains of quality of life, suggesting that diet seems to play a relevant role in both the general population and people affected by chronic conditions with an inflammatory basis. Conclusions: Adherence to the Mediterranean diet provides significant benefits in preventing and managing various chronic diseases commonly associated with aging populations. Furthermore, it enhances the overall health and quality of life of aging individuals, ultimately supporting more effective and less invasive treatment approaches for chronic diseases.

Producción Científica

Justyna Godos mail , Monica Guglielmetti mail , Cinzia Ferraris mail , Evelyn Frias-Toral mail , Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Vivian Lipari mail vivian.lipari@uneatlantico.es, Andrea Di Mauro mail , Fabrizio Furnari mail , Sabrina Castellano mail , Fabio Galvano mail , Licia Iacoviello mail , Marialaura Bonaccio mail , Giuseppe Grosso mail ,

Godos

<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images

Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.

Producción Científica

Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Tanveer