A Lightweight Scheme for Mitigating RPL Version Number Attacks in IoT Networks

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Internet of Things (IoT) systems incorporate a multitude of resource-limited devices typically interconnected over Low Power and Lossy Networks (LLNs). Robust IP-based network routing among such constrained IoT devices can be effectively realized using the IPv6 Routing Protocol for LLN (RPL) which is an IETF-standardized protocol. The RPL design features a topology maintenance mechanism based on a version numbering system. However, such a design property makes it easy to initiate Version Number (VN) attacks targeting the stability, lifetime, and performance of RPL networks. Thus the wide deployment of RPL-based IoT networks would be hindered significantly unless internal routing attacks such as the VN attacks are efficiently addressed. In this research work, a lightweight and effective detection and mitigation solution against RPL VN attacks is introduced. With simple modifications to the RPL functionality, a collaborative and distributed security scheme is incorporated into the protocol design (referred to as CDRPL). As the experimental results indicated, it provides a secure and scalable solution enhancing the resilience of the protocol against simple and composite VN attacks in different experimental setups. CDRPL guaranteed fast and accurate attack detection as well as quick topology convergence upon any attack attempt. It also efficiently maintained network stability, control traffic overhead, QoS performance, and energy consumption during different scenarios of the VN attack. Compared to other similar approaches, CDRPL yields better performance results with lightweight node-local processing, no additional entities, and less communication overhead. metadata Alsukayti, Ibrahim S. and Singh, Aman mail UNSPECIFIED, aman.singh@uneatlantico.es (2022) A Lightweight Scheme for Mitigating RPL Version Number Attacks in IoT Networks. IEEE Access, 10. pp. 111115-111133. ISSN 2169-3536

[img] Text
A_Lightweight_Scheme_for_Mitigating_RPL_Version_Number_Attacks_in_IoT_Networks.pdf

Download (2MB)

Abstract

Internet of Things (IoT) systems incorporate a multitude of resource-limited devices typically interconnected over Low Power and Lossy Networks (LLNs). Robust IP-based network routing among such constrained IoT devices can be effectively realized using the IPv6 Routing Protocol for LLN (RPL) which is an IETF-standardized protocol. The RPL design features a topology maintenance mechanism based on a version numbering system. However, such a design property makes it easy to initiate Version Number (VN) attacks targeting the stability, lifetime, and performance of RPL networks. Thus the wide deployment of RPL-based IoT networks would be hindered significantly unless internal routing attacks such as the VN attacks are efficiently addressed. In this research work, a lightweight and effective detection and mitigation solution against RPL VN attacks is introduced. With simple modifications to the RPL functionality, a collaborative and distributed security scheme is incorporated into the protocol design (referred to as CDRPL). As the experimental results indicated, it provides a secure and scalable solution enhancing the resilience of the protocol against simple and composite VN attacks in different experimental setups. CDRPL guaranteed fast and accurate attack detection as well as quick topology convergence upon any attack attempt. It also efficiently maintained network stability, control traffic overhead, QoS performance, and energy consumption during different scenarios of the VN attack. Compared to other similar approaches, CDRPL yields better performance results with lightweight node-local processing, no additional entities, and less communication overhead.

Item Type: Article
Uncontrolled Keywords: Internet of Things, wireless sensor networks, RPL, network security
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Date Deposited: 25 Jan 2023 23:30
Last Modified: 11 Jul 2023 23:30
URI: https://repositorio.unic.co.ao/id/eprint/5559

Actions (login required)

View Item View Item

<a href="/11592/1/fchem-12-1361980.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Efficacy and classification of Sesamum indicum linn seeds with Rosa damascena mill oil in uncomplicated pelvic inflammatory disease using machine learning

Background and objectives: As microbes are developing resistance to antibiotics, natural, botanical drugs or traditional herbal medicine are presently being studied with an eye of great curiosity and hope. Hence, complementary and alternative treatments for uncomplicated pelvic inflammatory disease (uPID) are explored for their efficacy. Therefore, this study determined the therapeutic efficacy and safety of Sesamum indicum Linn seeds with Rosa damascena Mill Oil in uPID with standard control. Additionally, we analyzed the data with machine learning. Materials and methods: We included 60 participants in a double-blind, double-dummy, randomized standard-controlled study. Participants in the Sesame and Rose oil group (SR group) (n = 30) received 14 days course of black sesame powder (5 gm) mixed with rose oil (10 mL) per vaginum at bedtime once daily plus placebo capsules orally. The standard group (SC), received doxycycline 100 mg twice and metronidazole 400 mg thrice orally plus placebo per vaginum for the same duration. The primary outcome was a clinical cure at post-intervention for visual analogue scale (VAS) for lower abdominal pain (LAP), and McCormack pain scale (McPS) for abdominal-pelvic tenderness. The secondary outcome included white blood cells (WBC) cells in the vaginal wet mount test, safety profile, and health-related quality of life assessed by SF-12. In addition, we used AdaBoost (AB), Naïve Bayes (NB), and Decision Tree (DT) classifiers in this study to analyze the experimental data. Results: The clinical cure for LAP and McPS in the SR vs SC group was 82.85% vs 81.48% and 83.85% vs 81.60% on Day 15 respectively. On Day 15, pus cells less than 10 in the SR vs SC group were 86.6% vs 76.6% respectively. No adverse effects were reported in both groups. The improvement in total SF-12 score on Day 30 for the SR vs SC group was 82.79% vs 80.04% respectively. In addition, our Naive Bayes classifier based on the leave-one-out model achieved the maximum accuracy (68.30%) for the classification of both groups of uPID. Conclusion: We concluded that the SR group is cost-effective, safer, and efficacious for curing uPID. Proposed alternative treatment (test drug) could be a substitute of standard drug used for Female genital tract infections.

Producción Científica

X. Sumbul mail , Arshiya Sultana mail , Md Belal Bin Heyat mail , Khaleequr Rahman mail , Faijan Akhtar mail , Saba Parveen mail , Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Vivian Lipari mail vivian.lipari@uneatlantico.es, Isabel De la Torre Díez mail , Azmat Ali Khan mail , Abdul Malik mail ,

Sumbul

<a class="ep_document_link" href="/11642/1/s41598-024-57547-4.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis

Extracting knowledge from hybrid data, comprising both categorical and numerical data, poses significant challenges due to the inherent difficulty in preserving information and practical meanings during the conversion process. To address this challenge, hybrid data processing methods, combining complementary rough sets, have emerged as a promising approach for handling uncertainty. However, selecting an appropriate model and effectively utilizing it in data mining requires a thorough qualitative and quantitative comparison of existing hybrid data processing models. This research aims to contribute to the analysis of hybrid data processing models based on neighborhood rough sets by investigating the inherent relationships among these models. We propose a generic neighborhood rough set-based hybrid model specifically designed for processing hybrid data, thereby enhancing the efficacy of the data mining process without resorting to discretization and avoiding information loss or practical meaning degradation in datasets. The proposed scheme dynamically adapts the threshold value for the neighborhood approximation space according to the characteristics of the given datasets, ensuring optimal performance without sacrificing accuracy. To evaluate the effectiveness of the proposed scheme, we develop a testbed tailored for Parkinson’s patients, a domain where hybrid data processing is particularly relevant. The experimental results demonstrate that the proposed scheme consistently outperforms existing schemes in adaptively handling both numerical and categorical data, achieving an impressive accuracy of 95% on the Parkinson’s dataset. Overall, this research contributes to advancing hybrid data processing techniques by providing a robust and adaptive solution that addresses the challenges associated with handling hybrid data, particularly in the context of Parkinson’s disease analysis.

Producción Científica

Imran Raza mail , Muhammad Hasan Jamal mail , Rizwan Qureshi mail , Abdul Karim Shahid mail , Angel Olider Rojas Vistorte mail angel.rojas@uneatlantico.es, Md Abdus Samad mail , Imran Ashraf mail ,

Raza

<a class="ep_document_link" href="/11265/1/Food%20Frontiers%20-%202024%20-%20Cassotta%20-%20Human%E2%80%90based%20new%20approach%20methodologies%20to%20accelerate%20advances%20in%20nutrition%20research.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Human‐based new approach methodologies to accelerate advances in nutrition research

Much of nutrition research has been conventionally based on the use of simplistic in vitro systems or animal models, which have been extensively employed in an effort to better understand the relationships between diet and complex diseases as well as to evaluate food safety. Although these models have undeniably contributed to increase our mechanistic understanding of basic biological processes, they do not adequately model complex human physiopathological phenomena, creating concerns about the translatability to humans. During the last decade, extraordinary advancement in stem cell culturing, three-dimensional cell cultures, sequencing technologies, and computer science has occurred, which has originated a wealth of novel human-based and more physiologically relevant tools. These tools, also known as “new approach methodologies,” which comprise patient-derived organoids, organs-on-chip, multi-omics approach, along with computational models and analysis, represent innovative and exciting tools to forward nutrition research from a human-biology-oriented perspective. After considering some shortcomings of conventional in vitro and vivo approaches, here we describe the main novel available and emerging tools that are appropriate for designing a more human-relevant nutrition research. Our aim is to encourage discussion on the opportunity to explore innovative paths in nutrition research and to promote a paradigm-change toward a more human biology-focused approach to better understand human nutritional pathophysiology, to evaluate novel food products, and to develop more effective targeted preventive or therapeutic strategies while helping in reducing the number and replacing animals employed in nutrition research.

Producción Científica

Manuela Cassotta mail manucassotta@gmail.com, Danila Cianciosi mail , Maria Elexpuru Zabaleta mail maria.elexpuru@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es,

Cassotta

<a href="/11322/1/journal.pone.0298582.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing

With the outbreak of the COVID-19 pandemic, social isolation and quarantine have become commonplace across the world. IoT health monitoring solutions eliminate the need for regular doctor visits and interactions among patients and medical personnel. Many patients in wards or intensive care units require continuous monitoring of their health. Continuous patient monitoring is a hectic practice in hospitals with limited staff; in a pandemic situation like COVID-19, it becomes much more difficult practice when hospitals are working at full capacity and there is still a risk of medical workers being infected. In this study, we propose an Internet of Things (IoT)-based patient health monitoring system that collects real-time data on important health indicators such as pulse rate, blood oxygen saturation, and body temperature but can be expanded to include more parameters. Our system is comprised of a hardware component that collects and transmits data from sensors to a cloud-based storage system, where it can be accessed and analyzed by healthcare specialists. The ESP-32 microcontroller interfaces with the multiple sensors and wirelessly transmits the collected data to the cloud storage system. A pulse oximeter is utilized in our system to measure blood oxygen saturation and body temperature, as well as a heart rate monitor to measure pulse rate. A web-based interface is also implemented, allowing healthcare practitioners to access and visualize the collected data in real-time, making remote patient monitoring easier. Overall, our IoT-based patient health monitoring system represents a significant advancement in remote patient monitoring, allowing healthcare practitioners to access real-time data on important health metrics and detect potential health issues before they escalate.

Producción Científica

Md. Milon Islam mail , Imran Shafi mail , Sadia Din mail , Siddique Farooq mail , Isabel de la Torre Díez mail , Jose Breñosa mail josemanuel.brenosa@uneatlantico.es, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Imran Ashraf mail ,

Islam

<a class="ep_document_link" href="/11666/1/Pneumonia_Detection_Using_Chest_Radiographs_With_Novel_EfficientNetV2L_Model.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Pneumonia Detection Using Chest Radiographs With Novel EfficientNetV2L Model

Pneumonia is a potentially life-threatening infectious disease that is typically diagnosed through physical examinations and diagnostic imaging techniques such as chest X-rays, ultrasounds or lung biopsies. Accurate diagnosis is crucial as wrong diagnosis, inadequate treatment or lack of treatment can cause serious consequences for patients and may become fatal. The advancements in deep learning have significantly contributed to aiding medical experts in diagnosing pneumonia by assisting in their decision-making process. By leveraging deep learning models, healthcare professionals can enhance diagnostic accuracy and make informed treatment decisions for patients suspected of having pneumonia. In this study, six deep learning models including CNN, InceptionResNetV2, Xception, VGG16, ResNet50 and EfficientNetV2L are implemented and evaluated. The study also incorporates the Adam optimizer, which effectively adjusts the epoch for all the models. The models are trained on a dataset of 5856 chest X-ray images and show 87.78%, 88.94%, 90.7%, 91.66%, 87.98% and 94.02% accuracy for CNN, InceptionResNetV2, Xception, VGG16, ResNet50 and EfficientNetV2L, respectively. Notably, EfficientNetV2L demonstrates the highest accuracy and proves its robustness for pneumonia detection. These findings highlight the potential of deep learning models in accurately detecting and predicting pneumonia based on chest X-ray images, providing valuable support in clinical decision-making and improving patient treatment.

Producción Científica

Mudasir Ali mail , Mobeen Shahroz mail , Urooj Akram mail , Muhammad Faheem Mushtaq mail , Stefanía Carvajal-Altamiranda mail stefania.carvajal@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Isabel De La Torre Díez mail , Imran Ashraf mail ,

Ali