Items where Division is "Ibero-american International University > Research > Scientific Production" and Year is [pin missing: value2]
Up a level |
- FUNIBER (94)
2024
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The wheat crop that fulfills 35% of human food demand is facing several problems due to a lack of transparency, security, reliability, and traceability in the existing agriculture supply chain. Many systems have been developed for the agriculture supply chain to overcome such issues, however, monopolistic centralized control is the biggest hurdle to realizing the use of such systems. It has eventually gained consumers’ trust in branded products and rejected other products due to the lack of traceable supply chain information. This study proposes a blockchain-based framework for supply chain traceability which provides trustable, transparent, secure, and reliable services for the wheat crop. A crypto token called wheat coin (WC) has been introduced to keep track of transactions among the stakeholders of the wheat supply chain. Moreover, an initial coin offering (ICO) of WC, crypto wallets, and an economic model are proposed. Furthermore, a smart contract-based transaction system has been devised for the transparency of wheat crop transactions and conversion of WC to fiat and vice versa. We have developed the interplanetary file system (IPFS) to improve data availability, security, and transparency which stores encrypted private data of farmers, businesses, and merchants. Lastly, the results of the experiments show that the proposed framework shows better performance as compared to previous crop supply chain solutions in terms of latency to add-blocks, per-minute transactions, average gas charge for the transaction, and transaction verification time. Performance analysis with Bitcoin and Ethereum shows the superior performance of the proposed system.
metadata
Alam, Shadab and Farooq, Muhammad Shoaib and Ansari, Zain Khalid and Alvi, Atif and Rustam, Furqan and Díez, Isabel De La Torre and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2024)
Blockchain based transparent and reliable framework for wheat crop supply chain.
PLOS ONE, 19 (1).
e0295036.
ISSN 1932-6203
Article
Subjects > Biomedicine
Subjects > Social Sciences
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Aim: The development of predictive models for patients treated by emergency medical services (EMS) is on the rise in the emergency field. However, how these models evolve over time has not been studied. The objective of the present work is to compare the characteristics of patients who present mortality in the short, medium and long term, and to derive and validate a predictive model for each mortality time. Methods: A prospective multicenter study was conducted, which included adult patients with unselected acute illness who were treated by EMS. The primary outcome was noncumulative mortality from all causes by time windows including 30-day mortality, 31- to 180-day mortality, and 181- to 365-day mortality. Prehospital predictors included demographic variables, standard vital signs, prehospital laboratory tests, and comorbidities. Results: A total of 4830 patients were enrolled. The noncumulative mortalities at 30, 180, and 365 days were 10.8%, 6.6%, and 3.5%, respectively. The best predictive value was shown for 30-day mortality (AUC = 0.930; 95% CI: 0.919–0.940), followed by 180-day (AUC = 0.852; 95% CI: 0.832–0.871) and 365-day (AUC = 0.806; 95% CI: 0.778–0.833) mortality. Discussion: Rapid characterization of patients at risk of short-, medium-, or long-term mortality could help EMS to improve the treatment of patients suffering from acute illnesses.
metadata
Enriquez de Salamanca Gambara, Rodrigo and Sanz-García, Ancor and del Pozo Vegas, Carlos and López-Izquierdo, Raúl and Sánchez Soberón, Irene and Delgado Benito, Juan F. and Martínez Díaz, Raquel and Mazas Pérez-Oleaga, Cristina and Martínez López, Nohora Milena and Dominguez Azpíroz, Irma and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, raquel.martinez@uneatlantico.es, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, irma.dominguez@unini.edu.mx, UNSPECIFIED
(2024)
A Comparison of the Clinical Characteristics of Short-, Mid-, and Long-Term Mortality in Patients Attended by the Emergency Medical Services: An Observational Study.
Diagnostics, 14 (12).
p. 1292.
ISSN 2075-4418
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Generative intelligence relies heavily on the integration of vision and language. Much of the research has focused on image captioning, which involves describing images with meaningful sentences. Typically, when generating sentences that describe the visual content, a language model and a vision encoder are commonly employed. Because of the incorporation of object areas, properties, multi-modal connections, attentive techniques, and early fusion approaches like bidirectional encoder representations from transformers (BERT), these components have experienced substantial advancements over the years. This research offers a reference to the body of literature, identifies emerging trends in an area that blends computer vision as well as natural language processing in order to maximize their complementary effects, and identifies the most significant technological improvements in architectures employed for image captioning. It also discusses various problem variants and open challenges. This comparison allows for an objective assessment of different techniques, architectures, and training strategies by identifying the most significant technical innovations, and offers valuable insights into the current landscape of image captioning research.
metadata
Jamil, Azhar and Rehman, Saif Ur and Mahmood, Khalid and Gracia Villar, Mónica and Prola, Thomas and Diez, Isabel De La Torre and Samad, Md Abdus and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, thomas.prola@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Deep Learning Approaches for Image Captioning: Opportunities, Challenges and Future Potential.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Engineering
Subjects > Psychology
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Predicting depression intensity from microblogs and social media posts has numerous benefits and applications, including predicting early psychological disorders and stress in individuals or the general public. A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text. This study intends to begin by collecting relevant Tweets and generating a corpus of 210000 public tweets using Twitter public application programming interfaces (APIs). A strategy is devised to filter out only depression-related tweets by creating a list of relevant hashtags to reduce noise in the corpus. Furthermore, an algorithm is developed to annotate the data into three depression classes: ‘Mild,’ ‘Moderate,’ and ‘Severe,’ based on International Classification of Diseases-10 (ICD-10) depression diagnostic criteria. Different baseline classifiers are applied to the annotated dataset to get a preliminary idea of classification performance on the corpus. Further FastText-based model is applied and fine-tuned with different preprocessing techniques and hyperparameter tuning to produce the tuned model, which significantly increases the depression classification performance to an 84% F1 score and 90% accuracy compared to baselines. Finally, a FastText-based weighted soft voting ensemble (WSVE) is proposed to boost the model’s performance by combining several other classifiers and assigning weights to individual models according to their individual performances. The proposed WSVE outperformed all baselines as well as FastText alone, with an F1 of 89%, 5% higher than FastText alone, and an accuracy of 93%, 3% higher than FastText alone. The proposed model better captures the contextual features of the relatively small sample class and aids in the detection of early depression intensity prediction from tweets with impactful performances.
metadata
Rizwan, Muhammad and Mushtaq, Muhammad Faheem and Rafiq, Maryam and Mehmood, Arif and Diez, Isabel de la Torre and Gracia Villar, Mónica and Garay, Helena and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, helena.garay@uneatlantico.es, UNSPECIFIED
(2024)
Depression Intensity Classification from Tweets Using FastText Based Weighted Soft Voting Ensemble.
Computers, Materials & Continua, 78 (2).
pp. 2047-2066.
ISSN 1546-2226
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
With the outbreak of the COVID-19 pandemic, social isolation and quarantine have become commonplace across the world. IoT health monitoring solutions eliminate the need for regular doctor visits and interactions among patients and medical personnel. Many patients in wards or intensive care units require continuous monitoring of their health. Continuous patient monitoring is a hectic practice in hospitals with limited staff; in a pandemic situation like COVID-19, it becomes much more difficult practice when hospitals are working at full capacity and there is still a risk of medical workers being infected. In this study, we propose an Internet of Things (IoT)-based patient health monitoring system that collects real-time data on important health indicators such as pulse rate, blood oxygen saturation, and body temperature but can be expanded to include more parameters. Our system is comprised of a hardware component that collects and transmits data from sensors to a cloud-based storage system, where it can be accessed and analyzed by healthcare specialists. The ESP-32 microcontroller interfaces with the multiple sensors and wirelessly transmits the collected data to the cloud storage system. A pulse oximeter is utilized in our system to measure blood oxygen saturation and body temperature, as well as a heart rate monitor to measure pulse rate. A web-based interface is also implemented, allowing healthcare practitioners to access and visualize the collected data in real-time, making remote patient monitoring easier. Overall, our IoT-based patient health monitoring system represents a significant advancement in remote patient monitoring, allowing healthcare practitioners to access real-time data on important health metrics and detect potential health issues before they escalate.
metadata
Islam, Md. Milon and Shafi, Imran and Din, Sadia and Farooq, Siddique and Díez, Isabel de la Torre and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED
(2024)
Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing.
PLOS ONE, 19 (3).
e0298582.
ISSN 1932-6203
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Requirements specifications written in natural language enable us to understand a program’s intended functionality, which we can then translate into operational software. At varying stages of requirement specification, multiple ambiguities emerge. Ambiguities may appear at several levels including the syntactic, semantic, domain, lexical, and pragmatic levels. The primary objective of this study is to identify requirements’ pragmatic ambiguity. Pragmatic ambiguity occurs when the same set of circumstances can be interpreted in multiple ways. It requires consideration of the context statement of the requirements. Prior research has developed methods for obtaining concepts based on individual nodes, so there is room for improvement in the requirements interpretation procedure. This research aims to develop a more effective model for identifying pragmatic ambiguity in requirement definition. To better interpret requirements, we introduced the Concept Maximum Matching (CMM) technique, which extracts concepts based on edges. The CMM technique significantly improves precision because it permits a more accurate interpretation of requirements based on the relative weight of their edges. Obtaining an F-measure score of 0.754 as opposed to 0.563 in existing models, the evaluation results demonstrate that CMM is a substantial improvement over the previous method.
metadata
Aslam, Khadija and Iqbal, Faiza and Altaf, Ayesha and Hussain, Naveed and Gracia Villar, Mónica and Soriano Flores, Emmanuel and Diez, Isabel De La Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, emmanuel.soriano@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Detecting Pragmatic Ambiguity in Requirement Specification Using Novel Concept Maximum Matching Approach Based on Graph Network.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Biomedicine
Subjects > Engineering
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Background and objectives: As microbes are developing resistance to antibiotics, natural, botanical drugs or traditional herbal medicine are presently being studied with an eye of great curiosity and hope. Hence, complementary and alternative treatments for uncomplicated pelvic inflammatory disease (uPID) are explored for their efficacy. Therefore, this study determined the therapeutic efficacy and safety of Sesamum indicum Linn seeds with Rosa damascena Mill Oil in uPID with standard control. Additionally, we analyzed the data with machine learning.
Materials and methods: We included 60 participants in a double-blind, double-dummy, randomized standard-controlled study. Participants in the Sesame and Rose oil group (SR group) (n = 30) received 14 days course of black sesame powder (5 gm) mixed with rose oil (10 mL) per vaginum at bedtime once daily plus placebo capsules orally. The standard group (SC), received doxycycline 100 mg twice and metronidazole 400 mg thrice orally plus placebo per vaginum for the same duration. The primary outcome was a clinical cure at post-intervention for visual analogue scale (VAS) for lower abdominal pain (LAP), and McCormack pain scale (McPS) for abdominal-pelvic tenderness. The secondary outcome included white blood cells (WBC) cells in the vaginal wet mount test, safety profile, and health-related quality of life assessed by SF-12. In addition, we used AdaBoost (AB), Naïve Bayes (NB), and Decision Tree (DT) classifiers in this study to analyze the experimental data.
Results: The clinical cure for LAP and McPS in the SR vs SC group was 82.85% vs 81.48% and 83.85% vs 81.60% on Day 15 respectively. On Day 15, pus cells less than 10 in the SR vs SC group were 86.6% vs 76.6% respectively. No adverse effects were reported in both groups. The improvement in total SF-12 score on Day 30 for the SR vs SC group was 82.79% vs 80.04% respectively. In addition, our Naive Bayes classifier based on the leave-one-out model achieved the maximum accuracy (68.30%) for the classification of both groups of uPID.
Conclusion: We concluded that the SR group is cost-effective, safer, and efficacious for curing uPID. Proposed alternative treatment (test drug) could be a substitute of standard drug used for Female genital tract infections.
metadata
Sumbul, X. and Sultana, Arshiya and Heyat, Md Belal Bin and Rahman, Khaleequr and Akhtar, Faijan and Parveen, Saba and Briones Urbano, Mercedes and Lipari, Vivian and De la Torre Díez, Isabel and Khan, Azmat Ali and Malik, Abdul
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, mercedes.briones@uneatlantico.es, vivian.lipari@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Efficacy and classification of Sesamum indicum linn seeds with Rosa damascena mill oil in uncomplicated pelvic inflammatory disease using machine learning.
Frontiers in Chemistry, 12.
ISSN 2296-2646
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.
metadata
Mujahid, Muhammad and Rustam, Furqan and Shafique, Rahman and Caro Montero, Elizabeth and Silva Alvarado, Eduardo René and de la Torre Diez, Isabel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, elizabeth.caro@uneatlantico.es, eduardo.silva@funiber.org, UNSPECIFIED, UNSPECIFIED
(2024)
Efficient deep learning-based approach for malaria detection using red blood cell smears.
Scientific Reports, 14 (1).
ISSN 2045-2322
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
In contemporary society, depression has emerged as a prominent mental disorder that exhibits exponential growth and exerts a substantial influence on premature mortality. Although numerous research applied machine learning methods to forecast signs of depression. Nevertheless, only a limited number of research have taken into account the severity level as a multiclass variable. Besides, maintaining the equality of data distribution among all the classes rarely happens in practical communities. So, the inevitable class imbalance for multiple variables is considered a substantial challenge in this domain. Furthermore, this research emphasizes the significance of addressing class imbalance issues in the context of multiple classes. We introduced a new approach Feature group partitioning (FGP) in the data preprocessing phase which effectively reduces the dimensionality of features to a minimum. This study utilized synthetic oversampling techniques, specifically Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN), for class balancing. The dataset used in this research was collected from university students by administering the Burn Depression Checklist (BDC). For methodological modifications, we implemented heterogeneous ensemble learning stacking, homogeneous ensemble bagging, and five distinct supervised machine learning algorithms. The issue of overfitting was mitigated by evaluating the accuracy of the training, validation, and testing datasets. To justify the effectiveness of the prediction models, balanced accuracy, sensitivity, specificity, precision, and f1-score indices are used. Overall, comprehensive analysis demonstrates the discrimination between the Conventional Depression Screening (CDS) and FGP approach. In summary, the results show that the stacking classifier for FGP with SMOTE approach yields the highest balanced accuracy, with a rate of 92.81%. The empirical evidence has demonstrated that the FGP approach, when combined with the SMOTE, able to produce better performance in predicting the severity of depression. Most importantly the optimization of the training time of the FGP approach for all of the classifiers is a significant achievement of this research.
metadata
Shaha, Tumpa Rani and Begum, Momotaz and Uddin, Jia and Yélamos Torres, Vanessa and Alemany Iturriaga, Josep and Ashraf, Imran and Samad, Md. Abdus
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vanessa.yelamos@funiber.org, josep.alemany@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Feature group partitioning: an approach for depression severity prediction with class balancing using machine learning algorithms.
BMC Medical Research Methodology, 24 (1).
ISSN 1471-2288
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Much of nutrition research has been conventionally based on the use of simplistic in vitro systems or animal models, which have been extensively employed in an effort to better understand the relationships between diet and complex diseases as well as to evaluate food safety. Although these models have undeniably contributed to increase our mechanistic understanding of basic biological processes, they do not adequately model complex human physiopathological phenomena, creating concerns about the translatability to humans. During the last decade, extraordinary advancement in stem cell culturing, three-dimensional cell cultures, sequencing technologies, and computer science has occurred, which has originated a wealth of novel human-based and more physiologically relevant tools. These tools, also known as “new approach methodologies,” which comprise patient-derived organoids, organs-on-chip, multi-omics approach, along with computational models and analysis, represent innovative and exciting tools to forward nutrition research from a human-biology-oriented perspective. After considering some shortcomings of conventional in vitro and vivo approaches, here we describe the main novel available and emerging tools that are appropriate for designing a more human-relevant nutrition research. Our aim is to encourage discussion on the opportunity to explore innovative paths in nutrition research and to promote a paradigm-change toward a more human biology-focused approach to better understand human nutritional pathophysiology, to evaluate novel food products, and to develop more effective targeted preventive or therapeutic strategies while helping in reducing the number and replacing animals employed in nutrition research.
metadata
Cassotta, Manuela and Cianciosi, Danila and Elexpuru Zabaleta, Maria and Elío Pascual, Iñaki and Sumalla Cano, Sandra and Giampieri, Francesca and Battino, Maurizio
mail
manucassotta@gmail.com, UNSPECIFIED, maria.elexpuru@uneatlantico.es, inaki.elio@uneatlantico.es, sandra.sumalla@uneatlantico.es, francesca.giampieri@uneatlantico.es, maurizio.battino@uneatlantico.es
(2024)
Human‐based new approach methodologies to accelerate advances in nutrition research.
Food Frontiers.
pp. 1-32.
ISSN 2643-8429
Article
Subjects > Teaching
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
metadata
Alemany Iturriaga, Josep and Velarde-Sotres, Álvaro and Jorge, Javier and Giglio, Kamil
mail
josep.alemany@uneatlantico.es, alvaro.velarde@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria.
Cogent Education, 11 (1).
ISSN 2331-186X
Article
Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Isoflavones are a group of (poly)phenols, also defined as phytoestrogens, with chemical structures comparable with estrogen, that exert weak estrogenic effects. These phytochemical compounds have been targeted for their proven antioxidant and protective effects. Recognizing the increasing prevalence of cardiovascular diseases (CVD), there is a growing interest in understanding the potential cardiovascular benefits associated with these phytochemical compounds. Gut microbiota may play a key role in mediating the effects of isoflavones on vascular and endothelial functions, as it is directly implicated in isoflavones metabolism. The findings from randomized clinical trials indicate that isoflavone supplementation may exert putative effects on vascular biomarkers among healthy individuals, but not among patients affected by cardiometabolic disorders. These results might be explained by the enzymatic transformation to which isoflavones are subjected by the gut microbiota, suggesting that a diverse composition of the microbiota may determine the diverse bioavailability of these compounds. Specifically, the conversion of isoflavones in equol—a microbiota-derived metabolite—seems to differ between individuals. Further studies are needed to clarify the intricate molecular mechanisms behind these contrasting results.
metadata
Laudani, Samuele and Godos, Justyna and Romano, Giovanni Luca and Gozzo, Lucia and Di Domenico, Federica Martina and Dominguez Azpíroz, Irma and Martínez Díaz, Raquel and Giampieri, Francesca and Quiles, José L. and Battino, Maurizio and Drago, Filippo and Galvano, Fabio and Grosso, Giuseppe
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, irma.dominguez@unini.edu.mx, raquel.martinez@uneatlantico.es, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2024)
Isoflavones Effects on Vascular and Endothelial Outcomes: How Is the Gut Microbiota Involved?
Pharmaceuticals, 17 (2).
p. 236.
ISSN 1424-8247
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
The prevalence of sleep disorders, characterized by issues with quality, timing, and sleep duration is increasing globally. Among modifiable risk factors, diet quality has been suggested to influence sleep features. The Mediterranean diet is considered a landmark dietary pattern in terms of quality and effects on human health. However, dietary habits characterized by this cultural heritage should also be considered in the context of overall lifestyle behaviors, including sleep habits. This study aimed to systematically revise the literature relating to adherence to the Mediterranean diet and sleep features in observational studies. The systematic review comprised 23 reports describing the relation between adherence to the Mediterranean diet and different sleep features, including sleep quality, sleep duration, daytime sleepiness, and insomnia symptoms. The majority of the included studies were conducted in the Mediterranean basin and reported a significant association between a higher adherence to the Mediterranean diet and a lower likelihood of having poor sleep quality, inadequate sleep duration, excessive daytime sleepiness or symptoms of insomnia. Interestingly, additional studies conducted outside the Mediterranean basin showed a relationship between the adoption of a Mediterranean-type diet and sleep quality, suggesting that biological mechanisms sustaining such an association may exist. In conclusion, current evidence suggests a relationship between adhering to the Mediterranean diet and overall sleep quality and different sleep parameters. The plausible bidirectional association should be further investigated to understand whether the promotion of a healthy diet could be used as a tool to improve sleep quality.
metadata
Godos, Justyna and Ferri, Raffaele and Lanza, Giuseppe and Caraci, Filippo and Rojas Vistorte, Angel Olider and Yélamos Torres, Vanessa and Grosso, Giuseppe and Castellano, Sabrina
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, angel.rojas@uneatlantico.es, vanessa.yelamos@funiber.org, UNSPECIFIED, UNSPECIFIED
(2024)
Mediterranean Diet and Sleep Features: A Systematic Review of Current Evidence.
Nutrients, 16 (2).
p. 282.
ISSN 2072-6643
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Pneumonia is a potentially life-threatening infectious disease that is typically diagnosed through physical examinations and diagnostic imaging techniques such as chest X-rays, ultrasounds or lung biopsies. Accurate diagnosis is crucial as wrong diagnosis, inadequate treatment or lack of treatment can cause serious consequences for patients and may become fatal. The advancements in deep learning have significantly contributed to aiding medical experts in diagnosing pneumonia by assisting in their decision-making process. By leveraging deep learning models, healthcare professionals can enhance diagnostic accuracy and make informed treatment decisions for patients suspected of having pneumonia. In this study, six deep learning models including CNN, InceptionResNetV2, Xception, VGG16, ResNet50 and EfficientNetV2L are implemented and evaluated. The study also incorporates the Adam optimizer, which effectively adjusts the epoch for all the models. The models are trained on a dataset of 5856 chest X-ray images and show 87.78%, 88.94%, 90.7%, 91.66%, 87.98% and 94.02% accuracy for CNN, InceptionResNetV2, Xception, VGG16, ResNet50 and EfficientNetV2L, respectively. Notably, EfficientNetV2L demonstrates the highest accuracy and proves its robustness for pneumonia detection. These findings highlight the potential of deep learning models in accurately detecting and predicting pneumonia based on chest X-ray images, providing valuable support in clinical decision-making and improving patient treatment.
metadata
Ali, Mudasir and Shahroz, Mobeen and Akram, Urooj and Mushtaq, Muhammad Faheem and Carvajal-Altamiranda, Stefanía and Aparicio Obregón, Silvia and Díez, Isabel De La Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, stefania.carvajal@uneatlantico.es, silvia.aparicio@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2024)
Pneumonia Detection Using Chest Radiographs With Novel EfficientNetV2L Model.
IEEE Access, 12.
pp. 34691-34707.
ISSN 2169-3536
Article
Subjects > Teaching
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Español
Esta investigación tuvo por objetivo valorar la utilización de un Instrumento para la evaluación de Entornos Virtuales de Aprendizaje (EVA), específicamente el DELES (Distance Education Learning Environments Survey) para el Proyecto Europeo de Educación Inclusiva denominado LOVEDISTANCE (Learning Optimization and Academic Inclusion Via Equitative Distance Teaching and Learning). El supuesto inicial es que el instrumento puede ser útil, pero está desactualizado y no necesariamente enfocado a los objetivos del proyecto LOVEDISTANCE, en particular al de Educación Inclusiva. El ejercicio académico se llevó a cabo en la Universidad de Levinsky, en Tel Aviv, Israel, y el análisis de la información se hizo con un enfoque cuanti-cualitativo, donde se utilizó, en una primera parte, la medida del consenso entre expertos para medir la fiabilidad estadística de las respuestas de los expertos, y después se realizó un análisis de la varianza (ANOVA) para determinar si existían diferencias significativas entre las medias de los grupos; posteriormente, se hizo un análisis cualitativo pormenorizado de las observaciones a partir de tres ejes de análisis: consideraciones del ejercicio investigativo, perfil de los investigadores y análisis de cada escala del instrumento. Algunas de las conclusiones más relevantes fueron que el instrumento es, en su mayoría, útil para los propósitos del proyecto LOVEDISTANCE, pero precisa mejoras en lo referido a las siguientes escalas: relevancia del aprendizaje para el alumno, apoyo por parte del instructor y la medición en la autonomía del estudiante.
metadata
Garat de Marin, Mirtha Silvana and Rodríguez Velasco, Carmen Lilí and Prola, Thomas and Soriano Flores, Emmanuel
mail
silvana.marin@uneatlantico.es, carmen.rodriguez@uneatlantico.es, thomas.prola@uneatlantico.es, emmanuel.soriano@uneatlantico.es
(2024)
Readaptación de un instrumento para la evaluación de entornos virtuales de aprendizaje en el proyecto europeo de educación inclusiva denominado LOVEDISTANCE.
MLS Educational Research, 8 (1).
ISSN 2603-5820
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
The purpose of the study is to assess the risk of developing general eating disorders (ED), anorexia nervosa (AN), and bulimia nervosa (BN), as well as to examine the effects of gender, academic year, place of residence, faculty, and diet quality on that risk. Over two academic years, 129 first- and fourth-year Uneatlántico students were included in an observational descriptive study. The self-administered tests SCOFF, EAT-26, and BITE were used to determine the participants’ risk of developing ED. The degree of adherence to the Mediterranean diet (MD) was used to evaluate the quality of the diet. Data were collected at the beginning (T1) and at the end (T2) of the academic year. The main results were that at T1, 34.9% of participants were at risk of developing general ED, AN 3.9%, and BN 16.3%. At T2, these percentages were 37.2%, 14.7%, and 8.5%, respectively. At T2, the frequency of general ED in the female group was 2.5 times higher (OR: 2.55, 95% CI: 1.22–5.32, p = 0.012). The low-moderate adherence to the MD students’ group was 0.92 times less frequent than general ED at T2 (OR: 0.921, 95%CI: 0.385–2.20, p < 0.001). The most significant risk factor for developing ED is being a female in the first year of university. Moreover, it appears that the likelihood of developing ED generally increases during the academic year.
metadata
Eguren García, Imanol and Sumalla Cano, Sandra and Conde González, Sandra and Vila-Martí, Anna and Briones Urbano, Mercedes and Martínez Díaz, Raquel and Elío Pascual, Iñaki
mail
imanol.eguren@uneatlantico.es, sandra.sumalla@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, mercedes.briones@uneatlantico.es, raquel.martinez@uneatlantico.es, inaki.elio@uneatlantico.es
(2024)
Risk Factors for Eating Disorders in University Students: The RUNEAT Study.
Healthcare, 12 (9).
p. 942.
ISSN 2227-9032
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Magazines
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Named Entity Recognition (NER) is a natural language processing task that has been widely explored for different languages in the recent decade but is still an under-researched area for the Urdu language due to its rich morphology and language complexities. Existing state-of-the-art studies on Urdu NER use various deep-learning approaches through automatic feature selection using word embeddings. This paper presents a deep learning approach for Urdu NER that harnesses FastText and Floret word embeddings to capture the contextual information of words by considering the surrounding context of words for improved feature extraction. The pre-trained FastText and Floret word embeddings are publicly available for Urdu language which are utilized to generate feature vectors of four benchmark Urdu language datasets. These features are then used as input to train various combinations of Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), CRF, and deep learning models. The results show that our proposed approach significantly outperforms existing state-of-the-art studies on Urdu NER, achieving an F-score of up to 0.98 when using BiLSTM+GRU with Floret embeddings. Error analysis shows a low classification error rate ranging from 1.24% to 3.63% across various datasets showing the robustness of the proposed approach. The performance comparison shows that the proposed approach significantly outperforms similar existing studies.
metadata
Khan, Hikmat Ullah and Anam, Rimsha and Anwar, Muhammad Waqas and Jamal, Muhammad Hasan and Bajwa, Usama Ijaz and Diez, Isabel de la Torre and Silva Alvarado, Eduardo René and Soriano Flores, Emmanuel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, eduardo.silva@funiber.org, emmanuel.soriano@uneatlantico.es, UNSPECIFIED
(2024)
A deep learning approach for Named Entity Recognition in Urdu language.
PLOS ONE, 19 (3).
e0300725.
ISSN 1932-6203
2023
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.
metadata
Khan, Arooj and Shafi, Imran and Khawaja, Sajid Gul and de la Torre Díez, Isabel and López Flores, Miguel Ángel and Castanedo Galán, Juan and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, miguelangel.lopez@uneatlantico.es, juan.castanedo@uneatlantico.es, UNSPECIFIED
(2023)
Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants.
Sensors, 23 (18).
p. 7710.
ISSN 1424-8220
Article
Subjects > Engineering
Subjects > Comunication
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Chatbots are AI-powered programs designed to replicate human conversation. They are capable of performing a wide range of tasks, including answering questions, offering directions, controlling smart home thermostats, and playing music, among other functions. ChatGPT is a popular AI-based chatbot that generates meaningful responses to queries, aiding people in learning. While some individuals support ChatGPT, others view it as a disruptive tool in the field of education. Discussions about this tool can be found across different social media platforms. Analyzing the sentiment of such social media data, which comprises people’s opinions, is crucial for assessing public sentiment regarding the success and shortcomings of such tools. This study performs a sentiment analysis and topic modeling on ChatGPT-based tweets. ChatGPT-based tweets are the author’s extracted tweets from Twitter using ChatGPT hashtags, where users share their reviews and opinions about ChatGPT, providing a reference to the thoughts expressed by users in their tweets. The Latent Dirichlet Allocation (LDA) approach is employed to identify the most frequently discussed topics in relation to ChatGPT tweets. For the sentiment analysis, a deep transformer-based Bidirectional Encoder Representations from Transformers (BERT) model with three dense layers of neural networks is proposed. Additionally, machine and deep learning models with fine-tuned parameters are utilized for a comparative analysis. Experimental results demonstrate the superior performance of the proposed BERT model, achieving an accuracy of 96.49%.
metadata
R, Sudheesh and Mujahid, Muhammad and Rustam, Furqan and Shafique, Rahman and Chunduri, Venkata and Gracia Villar, Mónica and Brito Ballester, Julién and Diez, Isabel de la Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, julien.brito@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Analyzing Sentiments Regarding ChatGPT Using Novel BERT: A Machine Learning Approach.
Information, 14 (9).
p. 474.
ISSN 2078-2489
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
In the last decade, artificial intelligence (AI) and AI-mediated technologies have undergone rapid evolution in healthcare and medicine, from apps to computer software able to analyze medical images, robotic surgery and advanced data storage system. The main aim of the present commentary is to briefly describe the evolution of AI and its applications in healthcare, particularly in nutrition and clinical biochemistry. Indeed, AI is revealing itself to be an important tool in clinical nutrition by using telematic means to self-monitor various health metrics, including blood glucose levels, body weight, heart rate, fat percentage, blood pressure, activity tracking and calorie intake trackers. In particular, the application of the most common digital technologies used in the field of nutrition as well as the employment of AI in the management of diabetes and obesity, two of the most common nutrition-related pathologies worldwide, will be presented.
metadata
Salinari, Alessia and Machì, Michele and Armas Diaz, Yasmany and Cianciosi, Danila and Qi, Zexiu and Yang, Bei and Ferreiro Cotorruelo, Maria Soledad and Gracia Villar, Santos and Dzul López, Luis Alonso and Battino, Maurizio and Giampieri, Francesca
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, maurizio.battino@uneatlantico.es, francesca.giampieri@uneatlantico.es
(2023)
The Application of Digital Technologies and Artificial Intelligence in Healthcare: An Overview on Nutrition Assessment.
Diseases, 11 (3).
p. 97.
ISSN 2079-9721
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Chronic obstructive pulmonary disease (COPD) is a severe and chronic ailment that is currently ranked as the third most common cause of mortality across the globe. COPD patients often experience debilitating symptoms such as chronic coughing, shortness of breath, and fatigue. Sadly, the disease frequently goes undiagnosed until it is too late, leaving patients without the care they desperately need. So, COPD detection at an early stage is crucial to prevent further damage to the lungs and improve quality of life. Traditional COPD detection methods often rely on physical examinations and tests such as spirometry, chest radiography, blood gas tests, and genetic tests. However, these methods may not always be accurate or accessible. One of the key vital signs for detecting COPD is the patient’s respiration rate. However, it is crucial to consider a patient’s medical and demographic characteristics simultaneously for better detection results. To address this issue, this study aims to detect COPD patients using artificial intelligence techniques. To achieve this goal, a novel framework is proposed that utilizes ultra-wideband (UWB) radar-based temporal and spectral features to build machine learning and deep learning models. This new set of temporal and spectral features is extracted from respiration data collected non-invasively from 1.5 m distance using UWB radar. Different machine learning and deep learning models are trained and tested on the collected dataset. The findings are promising, with a high accuracy score of 100% for COPD detection. This means that the proposed framework could potentially save lives by identifying COPD patients at an early stage. The k-fold cross-validation technique and performance comparison with the state-of-the-art studies are applied to validate its performance, ensuring that the results are robust and reliable. The high accuracy score achieved in the study implies that the proposed framework has the potential for the efficient detection of COPD at an early stage.
metadata
Siddiqui, Hafeez-Ur-Rehman and Raza, Ali and Saleem, Adil Ali and Rustam, Furqan and Díez, Isabel de la Torre and Gavilanes Aray, Daniel and Lipari, Vivian and Ashraf, Imran and Dudley, Sandra
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, vivian.lipari@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
An Approach to Detect Chronic Obstructive Pulmonary Disease Using UWB Radar-Based Temporal and Spectral Features.
Diagnostics, 13 (6).
p. 1096.
ISSN 2075-4418
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The precise prediction of power estimates of wind–solar renewable energy sources becomes challenging due to their intermittent nature and difference in intensity between day and night. Machine-learning algorithms are non-linear mapping functions to approximate any given function from known input–output pairs and can be used for this purpose. This paper presents an artificial neural network (ANN)-based method to predict hybrid wind–solar resources and estimate power generation by correlating wind speed and solar radiation for real-time data. The proposed ANN allows optimization of the hybrid system’s operation by efficient wind and solar energy production estimation for a given set of weather conditions. The proposed model uses temperature, humidity, air pressure, solar radiation, optimum angle, and target values of known wind speeds, solar radiation, and optimum angle. A normalization function to narrow the error distribution and an iterative method with the Levenberg–Marquardt training function is used to reduce error. The experimental results show the effectiveness of the proposed approach against the existing wind, solar, or wind–solar estimation methods. It is envisaged that such an intelligent yet simplified method for predicting wind speed, solar radiation, and optimum angle, and designing wind–solar hybrid systems can improve the accuracy and efficiency of renewable energy generation.
metadata
Shafi, Imran and Khan, Harris and Farooq, Muhammad Siddique and Diez, Isabel de la Torre and Miró Vera, Yini Airet and Castanedo Galán, Juan and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, yini.miro@uneatlantico.es, juan.castanedo@uneatlantico.es, UNSPECIFIED
(2023)
An Artificial Neural Network-Based Approach for Real-Time Hybrid Wind–Solar Resource Assessment and Power Estimation.
Energies, 16 (10).
p. 4171.
ISSN 1996-1073
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Project-based organizations need to procure different commodities, and the failure/success of a project depends heavily on procurement management. Companies must refine and develop methods to simplify and optimize the procurement process in a highly competitive environment. This paper presents a methodology to help managers of project-based organizations analyze procurement processes to determine the optimal framework for simultaneously addressing multiple objectives. These goals include minimizing the time between the generation and required approval for a purchase, identifying unnamed activities, and allocating the budget efficiently. In this paper, we apply process mining algorithms to a dataset consisting of event logs on Oracle Financials-based enterprise resource planning (ERP) procurement processes in ERP systems and demonstrate interesting results leading to project procurement intelligence (PPI). The provided log data is the real-life data consisting of 180,462 events referring to seven activities within 43,101 cases. The logged procurement processes are filtered and analyzed using the open-source process mining frameworks PrOM and Disco. As a result of the process mining activities, a simulation of the discovered process model derived from the event log of the entire procurement process is presented, and the most frequent potential behaviors are identified. This analysis and extraction of frequent processes from corporate event logs help organizations understand, adapt, and redesign procurement operations and, most importantly, make them more efficient and of higher quality. This study shows that after the successful formulation of guiding principles, data refinement, and process structure optimization, the case study results are considered significant by the organization’s management.
metadata
Butt, Naveed Anwer and Mahmood, Zafar and Sana, Muhammad Usman and Díez, Isabel de la Torre and Castanedo Galán, Juan and Brie, Santiago and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juan.castanedo@uneatlantico.es, santiago.brie@uneatlantico.es, UNSPECIFIED
(2023)
Behavioral and Performance Analysis of a Real-Time Case Study Event Log: A Process Mining Approach.
Applied Sciences, 13 (7).
p. 4145.
ISSN 2076-3417
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Internet of Things (IoT) has made significant strides in energy management systems recently. Due to the continually increasing cost of energy, supply–demand disparities, and rising carbon footprints, the need for smart homes for monitoring, managing, and conserving energy has increased. In IoT-based systems, device data are delivered to the network edge before being stored in the fog or cloud for further transactions. This raises worries about the data’s security, privacy, and veracity. It is vital to monitor who accesses and updates this information to protect IoT end-users linked to IoT devices. Smart meters are installed in smart homes and are susceptible to numerous cyber attacks. Access to IoT devices and related data must be secured to prevent misuse and protect IoT users’ privacy. The purpose of this research was to design a blockchain-based edge computing method for securing the smart home system, in conjunction with machine learning techniques, in order to construct a secure smart home system with energy usage prediction and user profiling. The research proposes a blockchain-based smart home system that can continuously monitor IoT-enabled smart home appliances such as smart microwaves, dishwashers, furnaces, and refrigerators, among others. An approach based on machine learning was utilized to train the auto-regressive integrated moving average (ARIMA) model for energy usage prediction, which is provided in the user’s wallet, to estimate energy consumption and maintain user profiles. The model was tested using the moving average statistical model, the ARIMA model, and the deep-learning-based long short-term memory (LSTM) model on a dataset of smart-home-based energy usage under changing weather conditions. The findings of the analysis reveal that the LSTM model accurately forecasts the energy usage of smart homes.
metadata
Iqbal, Faiza and Altaf, Ayesha and Waris, Zeest and Gavilanes Aray, Daniel and López Flores, Miguel Ángel and Díez, Isabel de la Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, miguelangel.lopez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Blockchain-Modeled Edge-Computing-Based Smart Home Monitoring System with Energy Usage Prediction.
Sensors, 23 (11).
p. 5263.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Breast cancer is prevalent in women and the second leading cause of death. Conventional breast cancer detection methods require several laboratory tests and medical experts. Automated breast cancer detection is thus very important for timely treatment. This study explores the influence of various feature selection technique to increase the performance of machine learning methods for breast cancer detection. Experimental results shows that use of appropriate features tend to show highly accurate prediction
metadata
Shafique, Rahman and Rustam, Furqan and Choi, Gyu Sang and Díez, Isabel de la Torre and Mahmood, Arif and Lipari, Vivian and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2023)
Breast Cancer Prediction Using Fine Needle Aspiration Features and Upsampling with Supervised Machine Learning.
Cancers, 15 (3).
p. 681.
ISSN 2072-6694
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
UNSPECIFIED
metadata
Ali, Omer and Abbas, Qamar and Mahmood, Khalid and Bautista Thompson, Ernesto and Arambarri, Jon and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ernesto.bautista@unini.edu.mx, jon.arambarri@uneatlantico.es, UNSPECIFIED
(2023)
Competitive Coevolution-Based Improved Phasor Particle Swarm Optimization Algorithm for Solving Continuous Problems.
Mathematics, 11 (21).
p. 4406.
ISSN 2227-7390
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Artificial intelligence has made substantial progress in medicine. Automated dental imaging interpretation is one of the most prolific areas of research using AI. X-ray and infrared imaging systems have enabled dental clinicians to identify dental diseases since the 1950s. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, and machine- and deep-learning models for dental disease diagnoses using X-ray and near-infrared imagery. Despite the notable development of AI in dentistry, certain factors affect the performance of the proposed approaches, including limited data availability, imbalanced classes, and lack of transparency and interpretability. Hence, it is of utmost importance for the research community to formulate suitable approaches, considering the existing challenges and leveraging findings from the existing studies. Based on an extensive literature review, this survey provides a brief overview of X-ray and near-infrared imaging systems. Additionally, a comprehensive insight into challenges faced by researchers in the dental domain has been brought forth in this survey. The article further offers an amalgamative assessment of both performances and methods evaluated on public benchmarks and concludes with ethical considerations and future research avenues.
metadata
Shafi, Imran and Fatima, Anum and Afzal, Hammad and Díez, Isabel de la Torre and Lipari, Vivian and Breñosa, Jose and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, UNSPECIFIED
(2023)
A Comprehensive Review of Recent Advances in Artificial Intelligence for Dentistry E-Health.
Diagnostics, 13 (13).
p. 2196.
ISSN 2075-4418
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
In the field of natural language processing, machine translation is a colossally developing research area that helps humans communicate more effectively by bridging the linguistic gap. In machine translation, normalization and morphological analyses are the first and perhaps the most important modules for information retrieval (IR). To build a morphological analyzer, or to complete the normalization process, it is important to extract the correct root out of different words. Stemming and lemmatization are techniques commonly used to find the correct root words in a language. However, a few studies on IR systems for the Urdu language have shown that lemmatization is more effective than stemming due to infixes found in Urdu words. This paper presents a lemmatization algorithm based on recurrent neural network models for the Urdu language. However, lemmatization techniques for resource-scarce languages such as Urdu are not very common. The proposed model is trained and tested on two datasets, namely, the Urdu Monolingual Corpus (UMC) and the Universal Dependencies Corpus of Urdu (UDU). The datasets are lemmatized with the help of recurrent neural network models. The Word2Vec model and edit trees are used to generate semantic and syntactic embedding. Bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), bidirectional gated recurrent neural network (BiGRNN), and attention-free encoder–decoder (AFED) models are trained under defined hyperparameters. Experimental results show that the attention-free encoder-decoder model achieves an accuracy, precision, recall, and F-score of 0.96, 0.95, 0.95, and 0.95, respectively, and outperforms existing models
metadata
Hafeez, Rabab and Anwar, Muhammad Waqas and Jamal, Muhammad Hasan and Fatima, Tayyaba and Martínez Espinosa, Julio César and Dzul López, Luis Alonso and Bautista Thompson, Ernesto and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ulio.martinez@unini.edu.mx, luis.dzul@uneatlantico.es, ernesto.bautista@unini.edu.mx, UNSPECIFIED
(2023)
Contextual Urdu Lemmatization Using Recurrent Neural Network Models.
Mathematics, 11 (2).
p. 435.
ISSN 2227-7390
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Automated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches
metadata
Fatima, Anum and Shafi, Imran and Afzal, Hammad and Mahmood, Khawar and Díez, Isabel de la Torre and Lipari, Vivian and Brito Ballester, Julién and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, julien.brito@uneatlantico.es, UNSPECIFIED
(2023)
Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection.
Healthcare, 11 (3).
p. 347.
ISSN 2227-9032
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Monitoring tool conditions and sub-assemblies before final integration is essential to reducing processing failures and improving production quality for manufacturing setups. This research study proposes a real-time deep learning-based framework for identifying faulty components due to malfunctioning at different manufacturing stages in the aerospace industry. It uses a convolutional neural network (CNN) to recognize and classify intermediate abnormal states in a single manufacturing process. The manufacturing process for aircraft factory products comprises different phases; analyzing the components after the integration is labor-intensive and time-consuming, which often puts the company’s stake at high risk. To overcome these challenges, the proposed AI-based system can perform inspection and defect detection and alleviate the probability of components’ needing to be re-manufacturing after being assembled. In addition, it analyses the impact value, i.e., rework delays and costs, of manufacturing processes using a statistical process control tool on real-time data for various manufactured components. Defects are detected and classified using the CNN and teachable machine in the single manufacturing process during the initial stage prior to assembling the components. The results show the significance of the proposed approach in improving operational cost management and reducing rework-induced delays. Ground tests are conducted to calculate the impact value followed by the air tests of the final assembled aircraft. The statistical results indicate a 52.88% and 34.32% reduction in time delays and total cost, respectively.
metadata
Shafi, Imran and Mazhar, Muhammad Fawad and Fatima, Anum and Álvarez, Roberto Marcelo and Miró Vera, Yini Airet and Martínez Espinosa, Julio César and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED
(2023)
Deep Learning-Based Real Time Defect Detection for Optimization of Aircraft Manufacturing and Control Performance.
Drones, 7 (1).
p. 31.
ISSN 2504-446X
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Traffic accidents present significant risks to human life, leading to a high number of fatalities and injuries. According to the World Health Organization’s 2022 worldwide status report on road safety, there were 27,582 deaths linked to traffic-related events, including 4448 fatalities at the collision scenes. Drunk driving is one of the leading causes contributing to the rising count of deadly accidents. Current methods to assess driver alcohol consumption are vulnerable to network risks, such as data corruption, identity theft, and man-in-the-middle attacks. In addition, these systems are subject to security restrictions that have been largely overlooked in earlier research focused on driver information. This study intends to develop a platform that combines the Internet of Things (IoT) with blockchain technology in order to address these concerns and improve the security of user data. In this work, we present a device- and blockchain-based dashboard solution for a centralized police monitoring account. The equipment is responsible for determining the driver’s impairment level by monitoring the driver’s blood alcohol concentration (BAC) and the stability of the vehicle. At predetermined times, integrated blockchain transactions are executed, transmitting data straight to the central police account. This eliminates the need for a central server, ensuring the immutability of data and the existence of blockchain transactions that are independent of any central authority. Our system delivers scalability, compatibility, and faster execution times by adopting this approach. Through comparative research, we have identified a significant increase in the need for security measures in relevant scenarios, highlighting the importance of our suggested model.
metadata
Farooq, Hamza and Altaf, Ayesha and Iqbal, Faiza and Castanedo Galán, Juan and Gavilanes Aray, Daniel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juan.castanedo@uneatlantico.es, daniel.gavilanes@uneatlantico.es, UNSPECIFIED
(2023)
DrunkChain: Blockchain-Based IoT System for Preventing Drunk Driving-Related Traffic Accidents.
Sensors, 23 (12).
p. 5388.
ISSN 1424-8220
Article
Subjects > Teaching
Subjects > Comunication
Subjects > Psychology
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Communication professionals are experiencing a growing level of exposure to traumatic events as a result of their involvement in the coverage of various tragedies, including accidents, climatic disasters, rights violations, and acts of terrorism. However, it is worth noting that journalism and communication university courses often lack comprehensive instruction on effectively managing emotional challenges, anxiety, trauma, self-care, and the prevention of vicarious trauma. The objective of this study is to assess the inclusion of emotional management within the curricula of Journalism and Communication programmes offered by two universities in Catalonia, namely the University of Barcelona and the Autonomous University of Barcelona. In order to accomplish this objective, a series of semi-structured interviews were carried out with a total of twelve (12) professors who specialise in the fields of Journalism and Communication. Additionally, a thorough analysis was conducted on a set of 97 study plan guides. The results indicate that none of the participants in the interviews possess knowledge regarding any existing training programmes focused on emotional management. Furthermore, they unanimously agree on the importance of implementing such courses. The study plans did not include any subjects that were specifically dedicated to the topic of emotional management. This study presents a set of strategies aimed at creating a cross-disciplinary teaching-learning model that offers a comprehensive educational experience for students. This entails integrating precise subject matter on the previously mentioned topics, fostering critical contemplation and discourse regarding emotions within the educational setting, and advocating for ethical and sound professional behaviours.
metadata
Escudero, Carolina and Prola, Thomas and Fraga, Leticia and Soriano Flores, Emmanuel
mail
UNSPECIFIED, thomas.prola@uneatlantico.es, leticia.fraga@uneatlantico.es, emmanuel.soriano@uneatlantico.es
(2023)
Emotional Management in Journalism and Communication Studies.
Social Space, 23 (2).
pp. 507-534.
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.
metadata
Siddiqui, Hafeez Ur Rehman and Saleem, Adil Ali and Raza, Muhammad Amjad and Gracia Villar, Santos and Dzul Lopez, Luis and Diez, Isabel de la Torre and Rustam, Furqan and Dudley, Sandra
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, luis.dzul@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
Empowering Lower Limb Disorder Identification through PoseNet and Artificial Intelligence.
Diagnostics, 13 (18).
p. 2881.
ISSN 2075-4418
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Cricket has a massive global following and is ranked as the second most popular sport globally, with an estimated 2.5 billion fans. Batting requires quick decisions based on ball speed, trajectory, fielder positions, etc. Recently, computer vision and machine learning techniques have gained attention as potential tools to predict cricket strokes played by batters. This study presents a cutting-edge approach to predicting batsman strokes using computer vision and machine learning. The study analyzes eight strokes: pull, cut, cover drive, straight drive, backfoot punch, on drive, flick, and sweep. The study uses the MediaPipe library to extract features from videos and several machine learning and deep learning algorithms, including random forest (RF), support vector machine, k-nearest neighbors, decision tree, linear regression, and long short-term memory to predict the strokes. The study achieves an outstanding accuracy of 99.77% using the RF algorithm, outperforming the other algorithms used in the study. The k-fold validation of the RF model is 95.0% with a standard deviation of 0.07, highlighting the potential of computer vision and machine learning techniques for predicting batsman strokes in cricket. The study’s results could help improve coaching techniques and enhance batsmen’s performance in cricket, ultimately improving the game’s overall quality.
metadata
Siddiqui, Hafeez Ur Rehman and Younas, Faizan and Rustam, Furqan and Soriano Flores, Emmanuel and Brito Ballester, Julién and Diez, Isabel de la Torre and Dudley, Sandra and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, emmanuel.soriano@uneatlantico.es, julien.brito@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
Enhancing Cricket Performance Analysis with Human Pose Estimation and Machine Learning.
Sensors, 23 (15).
p. 6839.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Classification is a commonly used technique in data mining and is applied in various fields such as sentiment analysis, fraud detection, and fault diagnosis. Multiclass classification, which involves more than two classes, is more complex than binary classification. There are mainly two ways to approach multiclass classification, one is to expand the binary classifier into a multiclass classifier through various strategies and the other is to divide the multiclass classification problem into multiple binary problems (binarization). Two popular approaches for binarization are One vs One (OvO) and One vs All (OvA). It is simpler to aggregate the outputs of all binary classifiers as the number of classifiers decreases. However, it causes an imbalance of positive and negative sample numbers, which affects the classification effect of each binary classifier. In this article, we contribute to the field of ensemble learning and multi-class classification by proposing a new method called Ensemble Partition Sampling (EPS). This article presents a new approach to multiclass classification using an "Ensemble Partition Sampling" method within the "one-vs-all" (OvA) framework. The primary goal of this method is to tackle the problem of data imbalance by incorporating ensemble learning and preprocessing techniques into each binary dataset. The study found that Ensemble Partition Sampling (EPS) is the most effective method for imbalanced and multiclass imbalanced classification, outperforming other methods including OvA, SMOTE, k-means-SMOTE, Bagging-RB, DES-MI, OvO-EASY, and OvO-SMB. The study used CART, Random Forest, and SVM as classifiers, and the results consistently showed that EPS outperformed all other algorithms. The findings suggest that EPS is a highly effective method for improving classification performance in imbalanced and multiclass imbalanced datasets.
metadata
Jabir, Brahim and Díez, Isabel De la Torre and Bautista Thompson, Ernesto and Ramírez-Vargas, Debora L. and Kuc Castilla, Ángel Gabriel
mail
UNSPECIFIED
(2023)
Ensemble Partition Sampling (EPS) for Improved Multi-Class Classification.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Engineering
Subjects > Teaching
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The purpose of this research article was to contrast the benefits of the optimal probability threshold adjustment technique with other imbalanced data processing techniques, in its application to the prediction of post-graduate students’ late dropout from distance learning courses in two universities in the Ibero-American space. In this context, the optimization of the Logistic Regression, Random Forest, and Neural Network classifiers, together with different techniques, attributes, and algorithms (Hyperparameters, SMOTE, SMOTE_SVM, and ADASYN) resulted in a set of metrics for decision-making, prioritizing the reduction of false negatives. The best model was the Neural Network model in combination with SMOTE_SVM, obtaining a recall index of 0.75 and an f1-Score of 0.60. Likewise, the robustness of the Random Forest classifier for imbalanced data was demonstrated by achieving, with an optimal threshold of 0.427, very similar metrics to those obtained by the consensus of the three best models found. This demonstrates that, for Random Forest, the optimal prediction probability threshold is an excellent alternative to resampling techniques with different optimal thresholds. Finally, it is hoped that this research paper will contribute to boost the application of this simple but powerful technique, which is highly underrated with respect to data resampling techniques for imbalanced data.
metadata
Rodríguez Velasco, Carmen Lilí and García Villena, Eduardo and Brito Ballester, Julién and Durántez Prados, Frigdiano Álvaro and Silva Alvarado, Eduardo René and Crespo Álvarez, Jorge
mail
carmen.rodriguez@uneatlantico.es, eduardo.garcia@uneatlantico.es, julien.brito@uneatlantico.es, durantez@uneatlantico.es, eduardo.silva@funiber.org, jorge.crespo@uneatlantico.es
(2023)
Forecasting of Post-Graduate Students’ Late Dropout Based on the Optimal Probability Threshold Adjustment Technique for Imbalanced Data.
International Journal of Emerging Technologies in Learning (iJET), 18 (04).
pp. 120-155.
ISSN 1863-0383
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
In the Internet of things (IoT), data packets are accumulated and disseminated across IoT devices without human intervention, therefore the privacy and security of sensitive data during transmission are crucial. For this purpose, multiple routing techniques exist to ensure security and privacy in IoT Systems. One such technique is the routing protocol for low power and lossy networks (RPL) which is an IPv6 protocol commonly used for routing in IoT systems. Formal modeling of an IoT system can validate the reliability, accuracy, and consistency of the system. This paper presents the formal modeling of RPL protocol and the analysis of its security schemes using colored Petri nets that applies formal validation and verification for both the secure and non-secure modes of RPL protocol. The proposed approach can also be useful for formal modeling-based verification of the security of the other communication protocols.
metadata
Balfaqih, Mohammed and Ahmad, Farooq and Chaudhry, Muhammad Tayyab and Jamal, Muhammad Hasan and Sohail, Muhammad Amar and Gavilanes Aray, Daniel and Masías Vergara, Manuel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, UNSPECIFIED
(2023)
Formal modeling and analysis of security schemes of RPL protocol using colored Petri nets.
PLOS ONE, 18 (8).
e0285700.
ISSN 1932-6203
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
With the advancement in information technology, digital data stealing and duplication have become easier. Over a trillion bytes of data are generated and shared on social media through the internet in a single day, and the authenticity of digital data is currently a major problem. Cryptography and image watermarking are domains that provide multiple security services, such as authenticity, integrity, and privacy. In this paper, a digital image watermarking technique is proposed that employs the least significant bit (LSB) and canny edge detection method. The proposed method provides better security services and it is computationally less expensive, which is the demand of today’s world. The major contribution of this method is to find suitable places for watermarking embedding and provides additional watermark security by scrambling the watermark image. A digital image is divided into non-overlapping blocks, and the gradient is calculated for each block. Then convolution masks are applied to find the gradient direction and magnitude, and non-maximum suppression is applied. Finally, LSB is used to embed the watermark in the hysteresis step. Furthermore, additional security is provided by scrambling the watermark signal using our chaotic substitution box. The proposed technique is more secure because of LSB’s high payload and watermark embedding feature after a canny edge detection filter. The canny edge gradient direction and magnitude find how many bits will be embedded. To test the performance of the proposed technique, several image processing, and geometrical attacks are performed. The proposed method shows high robustness to image processing and geometrical attacks
metadata
Faheem, Zaid Bin and Ishaq, Abid and Rustam, Furqan and de la Torre Díez, Isabel and Gavilanes, Daniel and Masías Vergara, Manuel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, UNSPECIFIED
(2023)
Image Watermarking Using Least Significant Bit and Canny Edge Detection.
Sensors, 23 (3).
p. 1210.
ISSN 1424-8220
Article
Subjects > Engineering
Universidad Internacional do Cuanza > Research > Articles and books
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Abierto
Inglés
This research paper aims to examine the impact of innovative HRM practices, including employee participation, performance appraisal, reward and compensation, recruitment and selection, and redeployment–retraining on firm performance. For this purpose, four different models are utilized to examine the impact of innovative HRM department practices on the performance of small and medium enterprises (SMEs) in a country. The dependent variable, firm performance, is proxified by different variables such as labor productivity, product innovation, process innovation, and marketing innovation. For empirical analysis, primary data are collected using a questionnaire. Estimation is conducted using ordinary least squares (OLS) and logit regression techniques. The estimated results indicate that most innovative HRM practices have a statistically significant impact on firm performance in terms of labor productivity, product, process, and marketing innovations. These results imply that SMEs in a country may observe the benefits of devoting greater attention to innovative HRM practices to achieve their future growth potential.
metadata
Aslam, Mahvish and Shafi, Imran and Ahmed, Jamil and Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rojo Gutiérrez, Marco Antonio and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, UNSPECIFIED
(2023)
Impact of Innovation-Oriented Human Resource on Small and Medium Enterprises’ Performance.
Sustainability, 15 (7).
p. 6273.
ISSN 2071-1050
Article
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
There is growing evidence that Alzheimer’s disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects
metadata
Romero-Márquez, Jose M. and Navarro-Hortal, María D. and Orantes, Francisco J. and Esteban-Muñoz, Adelaida and Mazas Pérez-Oleaga, Cristina and Battino, Maurizio and Sánchez-González, Cristina and Rivas-García, Lorenzo and Giampieri, Francesca and Quiles, José L. and Forbes-Hernandez, Tamara Y.
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, tamara.forbes@unini.edu.mx
(2023)
In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain.
Antioxidants, 12 (2).
p. 404.
ISSN 2076-3921
Article
Subjects > Teaching
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Regulatory dispersion and a utilitarian use of sustainability deepen the gap within the teaching–learning process and limit the introduction of sustainable criteria in organizations through projects. The objective of this research consisted in developing a sustainable and holistic educational proposal for an online postgraduate program belonging to the Universidad Europea del Atlántico (UNEATLANTICO) within the field of projects. The proposal was based on the instrumentalization of a model comprised of national and international bibliographic references, resulting in a sustainability guide with significant improvements in relation to the reference standard par excellence: ISO 26000:2010. This guide formed the basis of a sustainability management plan, which was key in the project methodology and during the development of sustainable objectives and descriptors for each of the subjects. Lastly, the entities, attributes, and cardinal relationships were established for the development of a physical model used to facilitate the management of all this information within a SQL database. The rigor when determining the educational program, as well as the subsequent analysis of results as supported by the literature review, presupposes the application of this methodology toward other multidisciplinary programs contributing to the adoption of good sustainability practices within the educational field
metadata
Gracia Villar, Mónica and Álvarez, Roberto Marcelo and Brie, Santiago and Miró Vera, Yini Airet and García Villena, Eduardo
mail
monica.gracia@uneatlantico.es, roberto.alvarez@uneatlantico.es, santiago.brie@uneatlantico.es, yini.miro@uneatlantico.es, eduardo.garcia@uneatlantico.es
(2023)
Integration of Sustainable Criteria in the Development of a Proposal for an Online Postgraduate Program in the Projects Area.
Education Sciences, 13 (1).
p. 97.
ISSN 2227-7102
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Agriculture is a critical domain, where technology can have a significant impact on increasing yields, improving crop quality, and reducing environmental impact. The use of renewable energy sources such as solar power in agriculture has gained momentum in recent years due to the potential to reduce the carbon footprint of farming operations. In addition to providing a source of clean energy, solar tracking systems can also be used for remote weather monitoring in the agricultural field. The ability to collect real-time data on weather parameters such as temperature, humidity, and rainfall can help farmers make informed decisions on irrigation, pest control, and other crop management practices. The main idea of this study is to present a system that can improve the efficiency of solar panels to provide constant power to the sensor in the agricultural field and transfer real-time data to the app. This research presents a mechanism to improve the arrangement of a photovoltaic (PV) array with solar power and to produce maximum energy. The proposed system changes its direction in two axes (azimuth and elevation) by detecting the difference between the position of the sun and the panel to track the sun using a light-dependent resistor. A testbed with a hardware experimental setup is designed to test the system’s capability to track according to the position of the sun effectively. In the end, real-time data are displayed using the Android app, and the weather data are transferred to the app using a GSM/WiFi module. This research improves the existing system, and results showed that the relative increase in power generation was up to 52%. Using intelligent artificial intelligence techniques with the QoS algorithm, the quality of service produced by the existing system is improved.
metadata
Kanwal, Tabassum and Rehman, Saif Ur and Ali, Tariq and Mahmood, Khalid and Gracia Villar, Santos and Dzul Lopez, Luis and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, luis.dzul@unini.edu.mx, UNSPECIFIED
(2023)
An Intelligent Dual-Axis Solar Tracking System for Remote Weather Monitoring in the Agricultural Field.
Agriculture, 13 (8).
p. 1600.
ISSN 2077-0472
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection.
metadata
Akram, Urooj and Sharif, Wareesa and Shahroz, Mobeen and Mushtaq, Muhammad Faheem and Gavilanes Aray, Daniel and Bautista Thompson, Ernesto and Diez, Isabel de la Torre and Djuraev, Sirojiddin and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, ernesto.bautista@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System.
Sensors, 23 (14).
p. 6379.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Society and the environment are severely impacted by catastrophic events, specifically floods. Inadequate emergency preparedness and response are frequently the result of the absence of a comprehensive plan for flood management. This article proposes a novel flood disaster management (FDM) system using the full lifecycle disaster event model (FLCNDEM), an abstract model based on the function super object. The proposed FDM system integrates data from existing flood protocols, languages, and patterns and analyzes viewing requests at various phases of an event to enhance preparedness and response. The construction of a task library and knowledge base to initialize FLCNDEM results in FLCDEM flooding response. The proposed FDM system improves the emergency response by offering a comprehensive framework for flood management, including pre-disaster planning, real-time monitoring, and post-disaster evaluation. The proposed system can be modified to accommodate various flood scenarios and enhance global flood management.
metadata
Khan, Saad Mazhar and Shafi, Imran and Butt, Wasi Haider and Díez, Isabel de la Torre and López Flores, Miguel Ángel and Castanedo Galán, Juan and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, miguelangel.lopez@uneatlantico.es, juan.castanedo@uneatlantico.es, UNSPECIFIED
(2023)
Model Driven Approach for Efficient Flood Disaster Management with Meta Model Support.
Land, 12 (8).
p. 1538.
ISSN 2073-445X
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Background and Aims
The 2022-mpox outbreak has spread worldwide in a short time. Integrated knowledge of the epidemiology, clinical characteristics, and transmission of mpox are limited. This systematic review of peer-reviewed articles and gray literature was conducted to shed light on the epidemiology, clinical features, and transmission of 2022-mpox outbreak.
Methods
We identified 45 peer-reviewed manuscripts for data analysis. The standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration were followed for conducting the study.
Results
The case number of mpox has increased about 100 times worldwide. About 99% of the cases in 2022 outbreak was from non-endemic regions. Men (70%–98% cases) were mostly infected with homosexual and bisexual behavior (30%–60%). The ages of the infected people ranged between 30 and 40 years. The presence of HIV and sexually transmitted infections among 30%–60% of cases were reported. Human-to-human transmission via direct contact and different body fluids were involved in the majority of the cases (90%–100%). Lesions in genitals, perianal, and anogenital areas were more prevalent. Unusually, pharyngitis (15%–40%) and proctitis (20%–40%) were more common during 2022 outbreak than pre-2022 outbreaks. Brincidofovir is approved for the treatment of smallpox by FDA (USA). Two vaccines, including JYNNEOSTM and ACAM2000®, are approved and used for pre- and post-prophylaxis in cases. About 100% of the cases in non-endemic regions were associated with isolates of IIb clade with a divergence of 0.0018–0.0035. Isolates from B.1 lineage were the most predominant followed by B.1.2 and B.1.10.
Conclusion
This study will add integrated knowledge of the epidemiology, clinical features, and transmission of mpox.
metadata
Sharif, Nadim and Sharif, Nazmul and Alzahrani, Khalid J. and Halawani, Ibrahim F. and Alzahrani, Fuad M. and Díez, Isabel De la Torre and Lipari, Vivian and López Flores, Miguel Ángel and Parvez, Anowar K. and Dey, Shuvra K.
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, miguelangel.lopez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Molecular epidemiology, transmission and clinical features of 2022‐mpox outbreak: A systematic review.
Health Science Reports, 6 (10).
ISSN 2398-8835
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The rising popularity of online shopping has led to a steady stream of new product evaluations. Consumers benefit from these evaluations as they make purchasing decisions. Many research projects rank products using these reviews, however, most of these methodologies have ignored negative polarity while evaluating products for client needs. The main contribution of this research is the inclusion of negative polarity in the analysis of product rankings alongside positive polarity. To account for reviews that contain many sentiments and different elements, the suggested method first breaks them down into sentences. This process aids in determining the polarity of products at the phrase level by extracting elements from product evaluations. The next step is to link the polarity to the review’s sentence-level features. Products are prioritized following user needs by assigning relative importance to each of the polarities. The Amazon review dataset has been used in the experimental assessments so that the efficacy of the suggested approach can be estimated. Experimental evaluation of PRUS utilizes rank score ( RS ) and normalized discounted cumulative gain ( nDCG ) score. Results indicate that PRUS gives independence to the user to select recommended list based on specific features with respect to positive or negative aspects of the products.
metadata
Hussain, Naveed and Mirza, Hamid Turab and Iqbal, Faiza and Altaf, Ayesha and Shoukat, Ahtsham and Gracia Villar, Mónica and Soriano Flores, Emmanuel and Rojo Gutiérrez, Marco Antonio and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, UNSPECIFIED
(2023)
PRUS: Product Recommender System Based on User Specifications and Customers Reviews.
IEEE Access, 11.
pp. 81289-81297.
ISSN 2169-3536
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Objective The aim was to explore the association of demographic and prehospital parameters with short-term and long-term mortality in acute life-threatening cardiovascular disease by using a hazard model, focusing on elderly individuals, by comparing patients under 75 years versus patients over 75 years of age.
Design Prospective, multicentre, observational study.
Setting Emergency medical services (EMS) delivery study gathering data from two back-to-back studies between 1 October 2019 and 30 November 2021. Six advanced life support (ALS), 43 basic life support and five hospitals in Spain were considered.
Participants Adult patients suffering from acute life-threatening cardiovascular disease attended by the EMS.
Primary and secondary outcome measures The primary outcome was in-hospital mortality from any cause within the first to the 365 days following EMS attendance. The main measures included prehospital demographics, biochemical variables, prehospital ALS techniques used and syndromic suspected conditions.
Results A total of 1744 patients fulfilled the inclusion criteria. The 365-day cumulative mortality in the elderly amounted to 26.1% (229 cases) versus 11.6% (11.6%) in patients under 75 years old. Elderly patients (≥75 years) presented a twofold risk of mortality compared with patients ≤74 years. Life-threatening interventions (mechanical ventilation, cardioversion and defibrillation) were also related to a twofold increased risk of mortality. Importantly, patients suffering from acute heart failure presented a more than twofold increased risk of mortality.
Conclusions This study revealed the prehospital variables associated with the long-term mortality of patients suffering from acute cardiovascular disease. Our results provide important insights for the development of specific codes or scores for cardiovascular diseases to facilitate the risk of mortality characterisation.
metadata
del Pozo Vegas, Carlos and Zalama-Sánchez, Daniel and Sanz-Garcia, Ancor and López-Izquierdo, Raúl and Sáez-Belloso, Silvia and Mazas Pérez-Oleaga, Cristina and Dominguez Azpíroz, Irma and Elío Pascual, Iñaki and Martín-Rodríguez, Francisco
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, irma.dominguez@unini.edu.mx, inaki.elio@uneatlantico.es, UNSPECIFIED
(2023)
Prehospital acute life-threatening cardiovascular disease in elderly: an observational, prospective, multicentre, ambulance-based cohort study.
BMJ Open, 13 (11).
e078815.
ISSN 2044-6055
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Background: Nowadays, there is no gold standard score for prehospital sepsis and sepsis-related mortality identification. The aim of the present study was to analyze the performance of qSOFA, NEWS2 and mSOFA as sepsis predictors in patients with infection-suspected in prehospital care. The second objective is to study the predictive ability of the aforementioned scores in septic-shock and in-hospital mortality.
Methods: Prospective, ambulance-based, and multicenter cohort study, developed by the emergency medical services, among patients (n = 535) with suspected infection transferred by ambulance with high-priority to the emergency department (ED). The study enrolled 40 ambulances and 4 ED in Spain between 1 January 2020, and 30 September 2021. All the variables used in the scores, in addition to socio-demographic data, standard vital signs, prehospital analytical parameters (glucose, lactate, and creatinine) were collected. For the evaluation of the scores, the discriminative power, calibration curve and decision curve analysis (DCA) were used.
Results: The mSOFA outperformed the other two scores for mortality, presenting the following AUCs: 0.877 (95%CI 0.841–0.913), 0.761 (95%CI 0.706–0.816), 0.731 (95%CI 0.674–0.788), for mSOFA, NEWS, and qSOFA, respectively. No differences were found for sepsis nor septic shock, but mSOFA’s AUCs was higher than the one of the other two scores. The calibration curve and DCA presented similar results.
Conclusion: The use of mSOFA could provide and extra insight regarding the short-term mortality and sepsis diagnostic, backing its recommendation in the prehospital scenario.
metadata
Melero-Guijarro, Laura and Sanz-García, Ancor and Martín-Rodríguez, Francisco and Lipari, Vivian and Mazas Pérez-Oleaga, Cristina and Carvajal-Altamiranda, Stefanía and Martínez López, Nohora Milena and Dominguez Azpíroz, Irma and Castro Villamor, Miguel A. and Sánchez Soberón, Irene and López-Izquierdo, Raúl
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, cristina.mazas@uneatlantico.es, stefania.carvajal@uneatlantico.es, nohora.martinez@uneatlantico.es, irma.dominguez@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
Prehospital qSOFA, mSOFA, and NEWS2 performance for sepsis prediction: A prospective, multi-center, cohort study.
Frontiers in Medicine, 10.
ISSN 2296-858X
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Introduction: Rotavirus infection is a major cause of mortality among children under 5 years in Bangladesh. There is lack of integrated studies on rotavirus prevalence and genetic diversity during 1973 to 2023 in Bangladesh.
Methods: This meta-analysis was conducted to determine the prevalence, genotypic diversity and seasonal distribution of rotavirus during pre-vaccination period in Bangladesh. This study included published articles on rotavirus A, rotavirus B and rotavirus C. We used Medline, Scopus and Google Scholar for published articles. Selected literatures were published between 1973 to 2023.
Results: This study detected 12431 research articles published on rotavirus. Based on the inclusion criteria, 29 of 75 (30.2%) studies were selected. Molecular epidemiological data was taken from 29 articles, prevalence data from 29 articles, and clinical symptoms from 19 articles. The pooled prevalence of rotavirus was 30.1% (95% CI: 22%-45%, p = 0.005). Rotavirus G1 (27.1%, 2228 of 8219) was the most prevalent followed by G2 (21.09%, 1733 of 8219), G4 (11.58%, 952 of 8219), G9 (9.37%, 770 of 8219), G12 (8.48%, 697 of 8219), and G3 (2.79%, 229 of 8219), respectively. Genotype P[8] (40.6%, 2548 of 6274) was the most prevalent followed by P[4] (12.4%, 777 of 6274) and P[6] (6.4%, 400 of 6274), respectively. Rotavirus G1P[8] (19%) was the most frequent followed by G2P [4] (9.4%), G12P[8] (7.2%), and G9P[8], respectively. Rotavirus infection had higher odds of occurrence during December and February (aOR: 2.86, 95% CI: 2.43-3.6, p = 0.001).
Discussion: This is the first meta-analysis including all the studies on prevalence, molecular epidemiology, and genetic diversity of rotavirus from 1973 to 2023, pre-vaccination period in Bangladesh. This study will provide overall scenario of rotavirus genetic diversity and seasonality during pre-vaccination period and aids in policy making for rotavirus vaccination program in Bangladesh. This work will add valuable knowledge for vaccination against rotavirus and compare the data after starting vaccination in Bangladesh.
metadata
Sharif, Nadim and Sharif, Nazmul and Khan, Afsana and Dominguez Azpíroz, Irma and Martínez Díaz, Raquel and Díez, Isabel De la Torre and Parvez, Anowar Khasru and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, irma.dominguez@unini.edu.mx, raquel.martinez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
Prevalence and genetic diversity of rotavirus in Bangladesh during pre-vaccination period, 1973-2023: a meta-analysis.
Frontiers in Immunology, 14.
ISSN 1664-3224
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Introduction: Co-prevalence of long-COVID-19, cardiovascular diseases and diabetes is one of the major health challenges of the pandemic worldwide. Studies on long-COVID-19 and associated health outcomes are absent in Bangladesh. The main aim of this study was to determine the prevalence and impact of long-COVID-19 on preexisting diabetes and cardiovascular diseases (CVD) on health outcomes among patients in Bangladesh.
Methods: We collected data from 3,250 participants in Bangladesh, retrospectively. Multivariable logistic regression model was used to determine the odds ratio between independent and dependent variables. Kaplan-Meier survival curve was used to determine the cumulative survival.
Results: COVID-19 was detected among 73.4% (2,385 of 3,250) participants. Acute long-COVID-19 was detected among 28.4% (678 of 2,385) and chronic long-COVID-19 among 71.6% (1,707 of 2,385) patients. CVD and diabetes were found among 32%, and 24% patients, respectively. Mortality rate was 18% (585 of 3,250) among the participants. Co-prevalence of CVD, diabetes and COVID-19 was involved in majority of fatality (95%). Fever (97%), dry cough (87%) and loss of taste and smell (85%) were the most prevalent symptoms. Patients with co-prevalence of CVD, diabetes and COVID-19 had higher risk of fatality (OR: 3.65, 95% CI, 2.79–4.24). Co-prevalence of CVD, diabetes and chronic long-COVID-19 were detected among 11.9% patients.
Discussion: Risk of hospitalization and fatality reduced significantly among the vaccinated. This is one of the early studies on long-COVID-19 in Bangladesh.
metadata
Sharif, Nadim and Sharif, Nazmul and Khan, Afsana and Halawani, Ibrahim F. and Alzahrani, Fuad M. and Alzahrani, Khalid J. and Díez, Isabel De la Torre and Ramírez-Vargas, Debora L. and Kuc Castilla, Ángel Gabriel and Parvez, Anowar Khasru and Dey, Shuvra Kanti
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, debora.ramirez@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2023)
Prevalence and impact of long COVID-19 among patients with diabetes and cardiovascular diseases in Bangladesh.
Frontiers in Public Health, 11.
ISSN 2296-2565
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Railway track faults may lead to railway accidents and cause human and financial loss. Spatial, temporal, and weather elements, and wear and tear, lead to ballast, loose nuts, misalignment, and cracks leading to accidents. Manual inspection of such defects is time-consuming and prone to errors. Automatic inspection provides a fast, reliable, and unbiased solution. However, highly accurate fault detection is challenging due to the lack of public datasets, noisy data, inefficient models, etc. To obtain better performance, this study presents a novel approach that relies on mel frequency cepstral coefficient features from acoustic data. The primary objective of this study is to increase fault detection performance. As well as designing an ensemble model, we utilize selective features using chi-square(chi2) that have high importance with respect to the target class. Extensive experiments were carried out to analyze the efficiency of the proposed approach. The experimental results suggest that using 60 features, 40 original features, and 20 chi2 features produces optimal results both regarding accuracy and computational complexity. A mean accuracy score of 0.99 was obtained using the proposed approach with machine learning models using the collected data. Moreover, this performance was significantly better than that of existing approaches; however, the performance of models may vary in real-world settings.
metadata
Rustam, Furqan and Ishaq, Abid and Hashmi, Muhammad Shadab Alam and Siddiqui, Hafeez Ur Rehman and Dzul Lopez, Luis and Castanedo Galán, Juan and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, luis.dzul@unini.edu.mx, juan.castanedo@uneatlantico.es, UNSPECIFIED
(2023)
Railway Track Fault Detection Using Selective MFCC Features from Acoustic Data.
Sensors, 23 (16).
p. 7018.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Non-word and real-word errors are generally two types of spelling errors. Non-word errors are misspelled words that are nonexistent in the lexicon while real-word errors are misspelled words that exist in the lexicon but are used out of context in a sentence. Lexicon-based lookup approach is widely used for non-word errors but it is incapable of handling real-word errors as they require contextual information. Contrary to the English language, real-word error detection and correction for low-resourced languages like Urdu is an unexplored area. This paper presents a real-word spelling error detection and correction approach for the Urdu language. We develop an extensive lexicon of 593,738 words and use this lexicon to develop a dataset for real-word errors comprising 125562 sentences and 2,552,735 words. Based on the developed lexicon and dataset, we then develop a contextual spell checker that detects and corrects real-word errors. For the real-word error detection phase, word-gram features are used along with five machine learning classifiers, achieving a precision, recall, and F1-score of 0.84,0.79, and 0.81 respectively. We also test the proposed approach with a 40% error density. For real-word error correction, the Damerau-Levenshtein distance is used along with the n-gram model for further ranking of the suggested candidate words, achieving an accuracy of up to 83.67%.
metadata
Aziz, Romila and Anwar, Muhammad Waqas and Jamal, Muhammad Hasan and Bajwa, Usama Ijaz and Kuc Castilla, Ángel Gabriel and Uc-Rios, Carlos and Bautista Thompson, Ernesto and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carlos.uc@unini.edu.mx, ernesto.bautista@unini.edu.mx, UNSPECIFIED
(2023)
Real Word Spelling Error Detection and Correction for Urdu Language.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor’s algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as NIST fourth-round finalists. The research assessed the key generation, encapsulation, and decapsulation operations, providing insights into their efficiency and suitability for real-world applications. Further research and standardization efforts are required to enable secure and efficient post-quantum encryption. When selecting appropriate post-quantum encryption algorithms for specific applications, factors such as security levels, performance requirements, key sizes, and platform compatibility should be taken into account. This paper provides helpful insight for post-quantum cryptography researchers and practitioners, assisting in the decision-making process for selecting appropriate algorithms to protect confidential data in the age of quantum computing.
metadata
Farooq, Sana and Altaf, Ayesha and Iqbal, Faiza and Bautista Thompson, Ernesto and Ramírez-Vargas, Debora L. and Díez, Isabel de la Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ernesto.bautista@unini.edu.mx, debora.ramirez@unini.edu.mx, UNSPECIFIED, UNSPECIFIED
(2023)
Resilience Optimization of Post-Quantum Cryptography Key Encapsulation Algorithms.
Sensors, 23 (12).
p. 5379.
ISSN 1424-8220
Article
Subjects > Biomedicine
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Mutations allow viruses to continuously evolve by changing their genetic code to adapt to the hosts they infect. It is an adaptive and evolutionary mechanism that helps viruses acquire characteristics favoring their survival and propagation. The COVID-19 pandemic declared by the WHO in March 2020 is caused by the SARS-CoV-2 virus. The non-stop adaptive mutations of this virus and the emergence of several variants over time with characteristics favoring their spread constitute one of the biggest obstacles that researchers face in controlling this pandemic. Understanding the mutation mechanism allows for the adoption of anticipatory measures and the proposal of strategies to control its propagation. In this study, we focus on the mutations of this virus, and we propose the SARSMutOnto ontology to model SARS-CoV-2 mutations reported by Pango researchers. A detailed description is given for each mutation. The genes where the mutations occur and the genomic structure of this virus are also included. The sub-lineages and the recombinant sub-lineages resulting from these mutations are additionally represented while maintaining their hierarchy. We developed a Python-based tool to automatically generate this ontology from various published Pango source files. At the end of this paper, we provide some examples of SPARQL queries that can be used to exploit this ontology. SARSMutOnto might become a ‘wet bench’ machine learning tool for predicting likely future mutations based on previous mutations.
metadata
Bakkas, Jamal and Hanine, Mohamed and Chekry, Abderrahman and Gounane, Said and de la Torre Díez, Isabel and Lipari, Vivian and Martínez López, Nohora Milena and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, nohora.martinez@uneatlantico.es, UNSPECIFIED
(2023)
SARSMutOnto: An Ontology for SARS-CoV-2 Lineages and Mutations.
Viruses, 15 (2).
p. 505.
ISSN 1999-4915
Article
Subjects > Social Sciences
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
In the last two decades, there is an increasingly broad line of studies that warn about the emotional health of journalists and the challenges that it poses for communication professionals to be able to separate work issues from their personal lives. The coverage of COVID-19 exposed many journalists to situations of frustration, discomfort and stress for various reasons: long working hours, not having the appropriate technological material, added to an environment of uncertainty caused by the pandemic. This study aims to examine the possible scope of technostress –in some cases associated to digital divide– in journalists and analyze if they are aware of the uses of care of the self as a way to deal with stressful situations. For this, our research is based on documentary analysis, a survey answered by (50) fifty Argentinean journalists, and twelve (12) in-depth interviews to experienced journalists. Our findings suggest that constant exposure to computers and smartphones during the lockdown together with difficulties to connect to Internet or to have the adequate materials and the lack of coping strategies –as the care of the self– confirms the presence of technostress. Another result that emerges from this research, it should be addressed in future studies, is that some journalists’ reactions about care of the self could respond to the third person effect theory to maintain high self-esteem and not demonstrate vulnerability.
metadata
Escudero, Carolina and Prola, Thomas and Soriano Flores, Emmanuel and Silva Alvarado, Eduardo René
mail
UNSPECIFIED, thomas.prola@uneatlantico.es, emmanuel.soriano@uneatlantico.es, eduardo.silva@funiber.org
(2023)
The Scope of Technostress and Care of The Self on Journalists During the Pandemic.
Przestrzeń Społeczna (Social Space), 23 (4).
pp. 20-43.
ISSN 20841558
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The rapid generation of data from various sources by the public sector, private corporations, business associations, and local communities is referred to as big data. This large and complex dataset is often regarded as the ‘new oil’ by public administrations (PAs), and data-driven approaches are employed to transform it into valuable insights that can improve governance, transparency, digital services, and public engagement. The government’s big-data ecosystem (GBDE) is a result of this initiative. Effective data management is the first step towards large-scale data analysis, which yields insights that benefit your work and your customers. However, managing big data throughout its life cycle is a daunting challenge for public agencies. Despite its widespread use, big data management is still a significant obstacle. To address this issue, this study proposes a hybrid approach to secure the data management life cycle for GBDE. Specifically, we use a combination of the ECC algorithm with AES 128 BITS encryption to ensure that the data remain confidential and secure. We identified and analyzed various data life cycle models through a systematic literature review to create a data management life cycle for data-driven governments. This approach enhances the security and privacy of data management and addresses the challenges faced by public agencies.
metadata
Zahid, Reeba and Altaf, Ayesha and Ahmad, Tauqir and Iqbal, Faiza and Miró Vera, Yini Airet and López Flores, Miguel Ángel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, yini.miro@uneatlantico.es, miguelangel.lopez@uneatlantico.es, UNSPECIFIED
(2023)
Secure Data Management Life Cycle for Government Big-Data Ecosystem: Design and Development Perspective.
Systems, 11 (8).
p. 380.
ISSN 2079-8954
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
University of La Romana > Research > Scientific Production
Abierto
Inglés
Software cost and effort estimation is one of the most significant tasks in the area of software engineering. Research conducted in this field has been evolving with new techniques that necessitate periodic comparative analyses. Software project success largely depends on accurate software cost estimation as it gives an idea of the challenges and risks involved in the development. The great diversity of ML and Non-ML techniques has generated a comparison and progressed into the integration of these techniques. Based on varying advantages it has become imperative to work out preferred estimation techniques to improve the project development process. This study aims to present a systematic literature review (SLR) to investigate the trends of the articles published in the recent one and a half decades and to propose a way forward. This systematic literature review has proposed a three-stage approach to plan (Tollgate approach), conduct (Likert type scale), and report the results from five renowned digital libraries. For the selected 52 articles, artificial neural network model (ANN) and constructive cost model (COCOMO) based approaches have been the favored techniques. The mean magnitude of relative error (MMRE) has been the preferred accuracy metric, software engineering, and project management are the most relevant fields, and the promise repository has been identified as the widely accessed database. This review is likely to be of value for the development, cost, and effort estimations.
metadata
Rashid, Chaudhary Hamza and Shafi, Imran and Ahmad, Jamil and Bautista Thompson, Ernesto and Masías Vergara, Manuel and Diez, Isabel De La Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ernesto.bautista@unini.edu.mx, manuel.masias@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Software Cost and Effort Estimation: Current Approaches and Future Trends.
IEEE Access.
p. 1.
ISSN 2169-3536
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Safety critical spare parts hold special importance for aviation organizations. However, accurate forecasting of such parts becomes challenging when the data are lumpy or intermittent. This research paper proposes an artificial neural network (ANN) model that is able to observe the recent trends of error surface and responds efficiently to the local gradient for precise spare prediction results marked by lumpiness. Introduction of the momentum term allows the proposed ANN model to ignore small variations in the error surface and to behave like a low-pass filter and thus to avoid local minima. Using the whole collection of aviation spare parts having the highest demand activity, an ANN model is built to predict the failure of aircraft installed parts. The proposed model is first optimized for its topology and is later trained and validated with known historical demand datasets. The testing phase includes introducing input vector comprising influential factors that dictate sporadic demand. The proposed approach is found to provide superior results due to its simple architecture and fast converging training algorithm once evaluated against some other state-of-the-art models from the literature using related benchmark performance criteria. The experimental results demonstrate the effectiveness of the proposed approach. The accurate prediction of the cost-heavy and critical spare parts is expected to result in huge cost savings, reduce downtime, and improve the operational readiness of drones, fixed wing aircraft and helicopters. This also resolves the dead inventory issue as a result of wrong demands of fast moving spares due to human error.
metadata
Shafi, Imran and Sohail, Amir and Ahmad, Jamil and Martínez Espinosa, Julio César and Dzul Lopez, Luis Alonso and Bautista Thompson, Ernesto and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, luis.dzul@unini.edu.mx, ernesto.bautista@unini.edu.mx, UNSPECIFIED
(2023)
Spare Parts Forecasting and Lumpiness Classification Using Neural Network Model and Its Impact on Aviation Safety.
Applied Sciences, 13 (9).
p. 5475.
ISSN 2076-3417
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Disaster management is a critical area that requires efficient methods and techniques to address various challenges. This comprehensive assessment offers an in-depth overview of disaster management systems, methods, obstacles, and potential future paths. Specifically, it focuses on flood control, a significant and recurrent category of natural disasters. The analysis begins by exploring various types of natural catastrophes, including earthquakes, wildfires, and floods. It then delves into the different domains that collectively contribute to effective flood management. These domains encompass cutting-edge technologies such as big data analysis and cloud computing, providing scalable and reliable infrastructure for data storage, processing, and analysis. The study investigates the potential of the Internet of Things and sensor networks to gather real-time data from flood-prone areas, enhancing situational awareness and enabling prompt actions. Model-driven engineering is examined for its utility in developing and modeling flood scenarios, aiding in preparation and response planning. This study includes the Google Earth engine (GEE) and examines previous studies involving GEE. Moreover, we discuss remote sensing; remote sensing is undoubtedly a valuable tool for disaster management, and offers geographical data in various situations. We explore the application of Geographical Information System (GIS) and Spatial Data Management for visualizing and analyzing spatial data and facilitating informed decision-making and resource allocation during floods. In the final section, the focus shifts to the utilization of machine learning and data analytics in flood management. These methodologies offer predictive models and data-driven insights, enhancing early warning systems, risk assessment, and mitigation strategies. Through this in-depth analysis, the significance of incorporating these spheres into flood control procedures is highlighted, with the aim of improving disaster management techniques and enhancing resilience in flood-prone regions. The paper addresses existing challenges and provides future research directions, ultimately striving for a clearer and more coherent representation of disaster management techniques.
metadata
Khan, Saad Mazhar and Shafi, Imran and Butt, Wasi Haider and Diez, Isabel de la Torre and López Flores, Miguel Ángel and Castanedo Galán, Juan and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, miguelangel.lopez@uneatlantico.es, juan.castanedo@uneatlantico.es, UNSPECIFIED
(2023)
A Systematic Review of Disaster Management Systems: Approaches, Challenges, and Future Directions.
Land, 12 (8).
p. 1514.
ISSN 2073-445X
Article
Subjects > Biomedicine
Subjects > Engineering
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Cerrado
Inglés
Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics.
metadata
Ferreras, Antonio and Sumalla Cano, Sandra and Martínez-Licort, Rosmeri and Elío Pascual, Iñaki and Tutusaus, Kilian and Prola, Thomas and Vidal Mazón, Juan Luis and Sahelices, Benjamín and de la Torre Díez, Isabel
mail
UNSPECIFIED, sandra.sumalla@uneatlantico.es, UNSPECIFIED, inaki.elio@uneatlantico.es, kilian.tutusaus@uneatlantico.es, thomas.prola@uneatlantico.es, juanluis.vidal@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight.
Journal of Medical Systems, 47 (1).
ISSN 1573-689X
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
With a view of the post-COVID-19 world and probable future pandemics, this paper presents an Internet of Things (IoT)-based automated healthcare diagnosis model that employs a mixed approach using data augmentation, transfer learning, and deep learning techniques and does not require physical interaction between the patient and physician. Through a user-friendly graphic user interface and availability of suitable computing power on smart devices, the embedded artificial intelligence allows the proposed model to be effectively used by a layperson without the need for a dental expert by indicating any issues with the teeth and subsequent treatment options. The proposed method involves multiple processes, including data acquisition using IoT devices, data preprocessing, deep learning-based feature extraction, and classification through an unsupervised neural network. The dataset contains multiple periapical X-rays of five different types of lesions obtained through an IoT device mounted within the mouth guard. A pretrained AlexNet, a fast GPU implementation of a convolutional neural network (CNN), is fine-tuned using data augmentation and transfer learning and employed to extract the suitable feature set. The data augmentation avoids overtraining, whereas accuracy is improved by transfer learning. Later, support vector machine (SVM) and the K-nearest neighbors (KNN) classifiers are trained for lesion classification. It was found that the proposed automated model based on the AlexNet extraction mechanism followed by the SVM classifier achieved an accuracy of 98%, showing the effectiveness of the presented approach.
metadata
Shafi, Imran and Sajad, Muhammad and Fatima, Anum and Gavilanes Aray, Daniel and Lipari, Vivian and Diez, Isabel de la Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, vivian.lipari@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Teeth Lesion Detection Using Deep Learning and the Internet of Things Post-COVID-19.
Sensors, 23 (15).
p. 6837.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Blockchain and machine learning (ML) has garnered growing interest as cutting-edge technologies that have witnessed tremendous strides in their respective domains. Blockchain technology provides a decentralized and immutable ledger, enabling secure and transparent transactions without intermediaries. Alternatively, ML is a sub-field of artificial intelligence (AI) that empowers systems to enhance their performance by learning from data. The integration of these data-driven paradigms holds the potential to reinforce data privacy and security, improve data analysis accuracy, and automate complex processes. The confluence of blockchain and ML has sparked increasing interest among scholars and researchers. Therefore, a bibliometric analysis is carried out to investigate the key focus areas, hotspots, potential prospects, and dynamical aspects of the field. This paper evaluates 700 manuscripts drawn from the Web of Science (WoS) core collection database, spanning from 2017 to 2022. The analysis is conducted using advanced bibliometric tools (e.g., Bibliometrix R, VOSviewer, and CiteSpace) to assess various aspects of the research area regarding publication productivity, influential articles, prolific authors, the productivity of academic countries and institutions, as well as the intellectual structure in terms of hot topics and emerging trends. The findings suggest that upcoming research should focus on blockchain technology, AI-powered 5G networks, industrial cyber-physical systems, IoT environments, and autonomous vehicles. This paper provides a valuable foundation for both academic scholars and practitioners as they contemplate future projects on the integration of blockchain and ML.
metadata
Akrami, Nouhaila El and Hanine, Mohamed and Flores, Emmanuel Soriano and Aray, Daniel Gavilanes and Ashraf, Imran
mail
UNSPECIFIED
(2023)
Unleashing the Potential of Blockchain and Machine Learning: Insights and Emerging Trends From Bibliometric Analysis.
IEEE Access, 11.
pp. 78879-78903.
ISSN 2169-3536
Article
Subjects > Social Sciences
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The primary objectives of this research article were twofold. Firstly, to categorise a total of 294 individuals who aspired to three distinct competency profiles associated with the supervision of international car sales (SPV). Secondly, to prioritise the criteria used for measurement and assess the level of satisfaction attained following the provision of targeted online training for each respective position. Segmentation was performed using the K-Means algorithm on a Likert scale importance questionnaire. Satisfaction indicators were derived by applying fuzzy set methods to the results of a satisfaction questionnaire, also using a Likert scale. The measurement criteria did not show any clear negative perceptions. The overall satisfaction index was 0.7, which was supported by classic statistics and placed in a high category. Additionally, a variable analysis revealed that candidates from the Euro-Asian region exhibited significantly low levels of satisfaction. However, no significant associations were observed between satisfaction levels and gender, income profile, completed training action, or age groups. The researchers rigorously employed a methodology that included assessing the validity and reliability of the instrument. A review of relevant literature also supported the analysis of the results. These findings suggest that the method could be applied to other multidisciplinary programmes to make informed decisions in the field of training.
metadata
Brito Ballester, Julién and Gracia Villar, Mónica and Soriano Flores, Emmanuel and García Villena, Eduardo
mail
julien.brito@uneatlantico.es, monica.gracia@uneatlantico.es, emmanuel.soriano@uneatlantico.es, eduardo.garcia@uneatlantico.es
(2023)
Use of Fuzzy Approach Methodology and Consensus in Creating a Hierarchy of Satisfaction for Measurement Criteria: Application to Online Training Actions Directed at Classification by Key Competency Profiles in Sales Supervision (SPV) within the Automotive.
International Journal of Operations and Quantitative Management, 29 (2).
pp. 223-251.
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
This study sought to investigate how different brain regions are affected by Alzheimer’s disease (AD) at various phases of the disease, using independent component analysis (ICA). The study examines six regions in the mild cognitive impairment (MCI) stage, four in the early stage of Alzheimer’s disease (AD), six in the moderate stage, and six in the severe stage. The precuneus, cuneus, middle frontal gyri, calcarine cortex, superior medial frontal gyri, and superior frontal gyri were the areas impacted at all phases. A general linear model (GLM) is used to extract the voxels of the previously mentioned regions. The resting fMRI data for 18 AD patients who had advanced from MCI to stage 3 of the disease were obtained from the ADNI public source database. The subjects include eight women and ten men. The voxel dataset is used to train and test ten machine learning algorithms to categorize the MCI, mild, moderate, and severe stages of Alzheimer’s disease. The accuracy, recall, precision, and F1 score were used as conventional scoring measures to evaluate the classification outcomes. AdaBoost fared better than the other algorithms and obtained a phenomenal accuracy of 98.61%, precision of 99.00%, and recall and F1 scores of 98.00% each.
metadata
Shahzadi, Samra and Butt, Naveed Anwer and Sana, Muhammad Usman and Elío Pascual, Iñaki and Briones Urbano, Mercedes and Díez, Isabel de la Torre and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, inaki.elio@uneatlantico.es, mercedes.briones@uneatlantico.es, UNSPECIFIED, UNSPECIFIED
(2023)
Voxel Extraction and Multiclass Classification of Identified Brain Regions across Various Stages of Alzheimer’s Disease Using Machine Learning Approaches.
Diagnostics, 13 (18).
p. 2871.
ISSN 2075-4418
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Objective
This study aims to develop a lightweight convolutional neural network-based edge federated learning architecture for COVID-19 detection using X-ray images, aiming to minimize computational cost, latency, and bandwidth requirements while preserving patient privacy.
Method
The proposed method uses an edge federated learning architecture to optimize task allocation and execution. Unlike in traditional edge networks where requests from fixed nodes are handled by nearby edge devices or remote clouds, the proposed model uses an intelligent broker within the federation to assess member edge cloudlets' parameters, such as resources and hop count, to make optimal decisions for task offloading. This approach enhances performance and privacy by placing tasks in closer proximity to the user. DenseNet is used for model training, with a depth of 60 and 357,482 parameters. This resource-aware distributed approach optimizes computing resource utilization within the edge-federated learning architecture.
Results
The experimental results demonstrate significant improvements in various performance metrics. The proposed method reduces training time by 53.1%, optimizes CPU and memory utilization by 17.5% and 33.6%, and maintains accurate COVID-19 detection capabilities without compromising the F1 score, demonstrating the efficiency and effectiveness of the lightweight convolutional neural network-based edge federated learning architecture.
Conclusion
Existing studies predominantly concentrate on either privacy and accuracy or load balancing and energy optimization, with limited emphasis on training time. The proposed approach offers a comprehensive performance-centric solution that simultaneously addresses privacy, load balancing, and energy optimization while reducing training time, providing a more holistic and balanced solution for optimal system performance.
metadata
Alvi, Sohaib Bin Khalid and Nayyer, Muhammad Ziad and Jamal, Muhammad Hasan and Raza, Imran and de la Torre Diez, Isabel and Rodríguez Velasco, Carmen Lilí and Breñosa, Jose and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carmen.rodriguez@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, UNSPECIFIED
(2023)
A lightweight deep learning approach for COVID-19 detection using X-ray images with edge federation.
DIGITAL HEALTH, 9.
ISSN 2055-2076
2022
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Artificial intelligence has been widely used in the field of dentistry in recent years. The present study highlights current advances and limitations in integrating artificial intelligence, machine learning, and deep learning in subfields of dentistry including periodontology, endodontics, orthodontics, restorative dentistry, and oral pathology. This article aims to provide a systematic review of current clinical applications of artificial intelligence within different fields of dentistry. The preferred reporting items for systematic reviews (PRISMA) statement was used as a formal guideline for data collection. Data was obtained from research studies for 2009–2022. The analysis included a total of 55 papers from Google Scholar, IEEE, PubMed, and Scopus databases. Results show that artificial intelligence has the potential to improve dental care, disease diagnosis and prognosis, treatment planning, and risk assessment. Finally, this study highlights the limitations of the analyzed studies and provides future directions to improve dental care
metadata
Fatima, Anum and Shafi, Imran and Afzal, Hammad and Díez, Isabel De La Torre and Lourdes, Del Rio-Solá M. and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED
(2022)
Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives.
Healthcare, 10 (11).
p. 2188.
ISSN 2227-9032
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The fast expansion of ICT (information and communications technology) has provided rich sources of data for the analysis, modeling, and interpretation of human mobility patterns. Many researchers have already introduced behavior-aware protocols for a better understanding of architecture and realistic modeling of behavioral characteristics, similarities, and aggregation of mobile users. We are introducing the similarity analytical framework for the mobile encountering analysis to allow for more direct integration between the physical world and cyber-based systems. In this research, we propose a method for finding the similarity behavior of users’ mobility patterns based on location and time. This research was conducted to develop a technique for producing co-occurrence matrices of users based on their similar behaviors to determine their encounters. Our approach, named SAA (similarity analysis approach), makes use of the device info i.e., IP (internet protocol) and MAC (media access control) address, providing an in-depth analysis of similarity behaviors on a daily basis. We analyzed the similarity distributions of users on different days of the week for different locations based on their real movements. The results show similar characteristics of users with common mobility behaviors based on location and time to showcase the efficacy. The results show that the proposed SAA approach is 33% more accurate in terms of recognizing the user’s similarity as compared to the existing similarity approach.
metadata
Memon, Ambreen and Kilby, Jeff and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED
(2022)
Analysis and Implementation of Human Mobility Behavior Using Similarity Analysis Based on Co-Occurrence Matrix.
Sensors, 22 (24).
p. 9898.
ISSN 1424-8220
Article
Subjects > Social Sciences
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Innovation plays a pivotal role in the progress and goodwill of an organization, and its ability to thrive. Consequently, the impact analysis of innovation on the performance of an organization holds great importance. This paper presents a two-stage analytical framework to examine the impact of business innovation on a firm’s performance, especially firms from the manufacturing sector. The prime objective is to identify the factors that have an impact on firm-level innovation, and to examine the impact of firm-level innovation on business performance. The framework and its analysis are based on the latest World Bank enterprise survey, with a sample size of 696 manufacturing firms. The first stage of the proposed framework establishes the analytical results through Bivariate Probit, which indicates that research and development (R&D) has a significantly positive impact on the product, process, marketing, and organizational innovations. It thus highlights the important role of the allocation of lump-sum amounts for R&D activities. The statistical analysis shows that innovation does not depend on the size of the firms. Moreover, the older firms are found to be wiser at conducting R&D than newer firms that are reluctant to take risks. The second stage of the proposed framework separately analyzes the impacts of the product and organizational innovation, and the process and marketing innovation on the firm performance, and finds them to be statistically significant and insignificant, respectively.
metadata
Aslam, Mahrukh and Shafi, Imran and Ahmad, Jamil and Álvarez, Roberto Marcelo and Miró Vera, Yini Airet and Soriano Flores, Emmanuel and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, emmanuel.soriano@uneatlantico.es, UNSPECIFIED
(2022)
An Analytical Framework for Innovation Determinants and Their Impact on Business Performance.
Sustainability, 15 (1).
p. 458.
ISSN 2071-1050
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The demand for cloud computing has drastically increased recently, but this paradigm has several issues due to its inherent complications, such as non-reliability, latency, lesser mobility support, and location-aware services. Fog computing can resolve these issues to some extent, yet it is still in its infancy. Despite several existing works, these works lack fault-tolerant fog computing, which necessitates further research. Fault tolerance enables the performing and provisioning of services despite failures and maintains anti-fragility and resiliency. Fog computing is highly diverse in terms of failures as compared to cloud computing and requires wide research and investigation. From this perspective, this study primarily focuses on the provision of uninterrupted services through fog computing. A framework has been designed to provide uninterrupted services while maintaining resiliency. The geographical information system (GIS) services have been deployed as a test bed which requires high computation, requires intensive resources in terms of CPU and memory, and requires low latency. Keeping different types of failures at different levels and their impacts on service failure and greater response time in mind, the framework was made anti-fragile and resilient at different levels. Experimental results indicate that during service interruption, the user state remains unaffected.
metadata
Mir, Tahira Sarwar and Liaqat, Hannan Bin and Kiren, Tayybah and Sana, Muhammad Usman and Álvarez, Roberto Marcelo and Miró Vera, Yini Airet and Pascual Barrera, Alina Eugenia and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, alina.pascual@unini.edu.mx, UNSPECIFIED
(2022)
Antifragile and Resilient Geographical Information System Service Delivery in Fog Computing.
Sensors, 22 (22).
p. 8778.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
With rapid urbanization, high rates of industrialization, and inappropriate waste disposal, water quality has been substantially degraded during the past decade. So, water quality prediction, an essential element for a healthy society, has become a task of great significance to protecting the water environment. Existing approaches focus predominantly on either water quality or water consumption prediction, utilizing complex algorithms that reduce the accuracy of imbalanced datasets and increase computational complexity. This study proposes a simple architecture of neural networks which is more efficient and accurate and can work for predicting both water quality and water consumption. An artificial neural network (ANN) consisting of one hidden layer and a couple of dropout and activation layers is utilized in this regard. The approach is tested using two datasets for predicting water quality and water consumption. Results show a 0.96 accuracy for water quality prediction which is better than existing studies. A 0.99 R2 score is obtained for water consumption prediction which is superior to existing state-of-the-art approaches.
metadata
Rustam, Furqan and Ishaq, Abid and Kokab, Sayyida Tabinda and de la Torre Diez, Isabel and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
An Artificial Neural Network Model for Water Quality and Water Consumption Prediction.
Water, 14 (21).
p. 3359.
ISSN 2073-4441
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Building energy consumption prediction has become an important research problem within the context of sustainable homes and smart cities. Data-driven approaches have been regarded as the most suitable for integration into smart houses. With the wide deployment of IoT sensors, the data generated from these sensors can be used for modeling and forecasting energy consumption patterns. Existing studies lag in prediction accuracy and various attributes of buildings are not very well studied. This study follows a data-driven approach in this regard. The novelty of the paper lies in the fact that an ensemble model is proposed, which provides higher performance regarding cooling and heating load prediction. Moreover, the influence of different features on heating and cooling load is investigated. Experiments are performed by considering different features such as glazing area, orientation, height, relative compactness, roof area, surface area, and wall area. Results indicate that relative compactness, surface area, and wall area play a significant role in selecting the appropriate cooling and heating load for a building. The proposed model achieves 0.999 R2 for heating load prediction and 0.997 R2 for cooling load prediction, which is superior to existing state-of-the-art models. The precise prediction of heating and cooling load, can help engineers design energy-efficient buildings, especially in the context of future smart homes
metadata
Chaganti, Rajasekhar and Rustam, Furqan and Daghriri, Talal and Díez, Isabel de la Torre and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
Building Heating and Cooling Load Prediction Using Ensemble Machine Learning Model.
Sensors, 22 (19).
p. 7692.
ISSN 1424-8220
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Asthma is a deadly disease that affects the lungs and air supply of the human body. Coronavirus and its variants also affect the airways of the lungs. Asthma patients approach hospitals mostly in a critical condition and require emergency treatment, which creates a burden on health institutions during pandemics. The similar symptoms of asthma and coronavirus create confusion for health workers during patient handling and treatment of disease. The unavailability of patient history to physicians causes complications in proper diagnostics and treatments. Many asthma patient deaths have been reported especially during pandemics, which necessitates an efficient framework for asthma patients. In this article, we have proposed a blockchain consortium healthcare framework for asthma patients. The proposed framework helps in managing asthma healthcare units, coronavirus patient records and vaccination centers, insurance companies, and government agencies, which are connected through the secure blockchain network. The proposed framework increases data security and scalability as it stores encrypted patient data on the Interplanetary File System (IPFS) and keeps data hash values on the blockchain. The patient data are traceable and accessible to physicians and stakeholders, which helps in accurate diagnostics, timely treatment, and the management of patients. The smart contract ensures the execution of all business rules. The patient profile generation mechanism is also discussed. The experiment results revealed that the proposed framework has better transaction throughput, query delay, and security than existing solutions
metadata
Farooq, Muhammad Shoaib and Suhail, Maryam and Qureshi, Junaid Nasir and Rustam, Furqan and de la Torre Díez, Isabel and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
Consortium Framework Using Blockchain for Asthma Healthcare in Pandemics.
Sensors, 22 (21).
p. 8582.
ISSN 1424-8220
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Español
Patient care and convenience remain the concern of medical professionals and caregivers alike. An unconscious patient confined to a bed may develop fluid accumulation and pressure sores due to inactivity and deficiency of oxygen flow. Moreover, weight monitoring is crucial for an effective treatment plan, which is difficult to measure for bedridden patients. This paper presents the design and development of a smart and cost-effective independent system for lateral rotation, movement, weight measurement, and transporting immobile patients. Optimal dimensions and practical design specifications are determined by a survey across various hospitals. Subsequently, the proposed hoist-based weighing and turning mechanism is CAD-modeled and simulated. Later, the structural analysis is carried out to select suitable metallurgy for various sub-assemblies to ensure design reliability. After fabrication, optimization, integration, and testing procedures, the base frame is designed to mount a hydraulic motor for the actuator, a DC power source for self-sustenance, and lockable wheels for portability. The installation of a weighing scale and a hydraulic actuator is ensured to lift the patient for weight measuring up to 600 pounds or lateral turning of 80 degrees both ways. The developed system offers simple operating characteristics, allows for keeping patient weight records, and assists nurses in changing patients’ lateral positions both ways, comfortably massage patients’ backs, and transport them from one bed to another. Additionally, being lightweight offers reduced contact with the patient to increase the healthcare staff’s safety in pandemics; it is also height adjustable and portable, allowing for use with multiple-sized beds and easy transportation across the medical facility. The feedback from paramedics is encouraging regarding reducing labor-intensive nursing tasks, alleviating the discomfort of long-term bed-ridden patients, and allowing medical practitioners to suggest better treatment plans
metadata
Shafi, Imran and Farooq, Muhammad Siddique and De La Torre Díez, Isabel and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED
(2022)
Design and Development of Smart Weight Measurement, Lateral Turning and Transfer Bedding for Unconscious Patients in Pandemics.
Healthcare, 10 (11).
p. 2174.
ISSN 2227-9032
Article
Subjects > Social Sciences
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
This article proposes a discussion on the form of coexistence of local Development Agencies in Uruguay, with local governments in the face of the new scenarios marked by the decentralization process, initiated in the country with the Constitutional Reform of 1996 and culminating in February 2009, with the Law of Political Decentralization and Citizen Participation. The discussion applies in particular to the local development agency of the city of Rivera (ADR), located in the northeast of the country. A descriptive, mixed, bibliographic, documentary investigation was carried out with primary data collection to internal and external references to ADR. The results show that the coexistence of both institutions has been difficult, without defining clear roles. Promoting dialogue to define the role of each seems to be the great challenge facing the sustainability of the agency
metadata
Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rodríguez Velasco, Carmen Lilí and Silva Alvarado, Eduardo and Calderón Iglesias, Rubén and Álvarez, Roberto Marcelo and Gracia Villar, Santos
mail
silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED, ruben.calderon@uneatlantico.es, roberto.alvarez@uneatlantico.es, santos.gracia@uneatlantico.es
(2022)
Development Agencies and Local Governments—Coexistence within the Same Territory.
Social Sciences, 11 (9).
p. 398.
ISSN 2076-0760
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature, especially given the repeated radiation exposure and high cost of computed tomography(CT). Examining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided design (CAD) model identifies the physiological and pathological changes in the soft tissues of the cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring and comparing the selected profile values in CT images obtained from patients and control patients at their diagnosis. Then, the model is tested and validated using the CT scans of both patients and control patients that are not shown in the training phase. The study investigates 888 annotated CT scans from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer. It is found superior to other existing methods including complex deep learning, simple machine learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung cancer and facilitating the timely management of patients.
metadata
Shafi, Imran and Din, Sadia and Khan, Asim and Díez, Isabel De La Torre and Pali-Casanova, Ramón and Tutusaus, Kilian and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, ramon.pali@unini.edu.mx, kilian.tutusaus@uneatlantico.es, UNSPECIFIED
(2022)
An Effective Method for Lung Cancer Diagnosis from CT Scan Using Deep Learning-Based Support Vector Network.
Cancers, 14 (21).
p. 5457.
ISSN 2072-6694
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Facial emotion recognition (FER) is an important and developing topic of research in the field of pattern recognition. The effective application of facial emotion analysis is gaining popularity in surveillance footage, expression analysis, activity recognition, home automation, computer games, stress treatment, patient observation, depression, psychoanalysis, and robotics. Robot interfaces, emotion-aware smart agent systems, and efficient human–computer interaction all benefit greatly from facial expression recognition. This has garnered attention as a key prospect in recent years. However, due to shortcomings in the presence of occlusions, fluctuations in lighting, and changes in physical appearance, research on emotion recognition has to be improved. This paper proposes a new architecture design of a convolutional neural network (CNN) for the FER system and contains five convolution layers, one fully connected layer with rectified linear unit activation function, and a SoftMax layer. Additionally, the feature map enhancement is applied to accomplish a higher detection rate and higher precision. Lastly, an application is developed that mitigates the effects of the aforementioned problems and can identify the basic expressions of human emotions, such as joy, grief, surprise, fear, contempt, anger, etc. Results indicate that the proposed CNN achieves 92.66% accuracy with mixed datasets, while the accuracy for the cross dataset is 94.94%.
metadata
Qazi, Awais Salman and Farooq, Muhammad Shoaib and Rustam, Furqan and Gracia Villar, Mónica and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
Emotion Detection Using Facial Expression Involving Occlusions and Tilt.
Applied Sciences, 12 (22).
p. 11797.
ISSN 2076-3417
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The purpose of this article is to help to bridge the gap between sustainability and its application to project management by developing a methodology based on artificial intelligence to diagnose, classify, and forecast the level of sustainability of a sample of 186 projects aimed at local communities in Latin American and Caribbean countries. First, the compliance evaluation with the Sustainable Development Goals (SDGs) within the framework of the 2030 Agenda served to diagnose and determine, through fuzzy sets, a global sustainability index for the sample, resulting in a value of 0.638, in accordance with the overall average for the region. Probabilistic predictions were then made on the sustainability of the projects using a series of supervised learning classifiers (SVM, Random Forest, AdaBoost, KNN, etc.), with the SMOTE resampling technique, which provided a significant improvement toward the results of the different metrics of the base models. In this context, the Support Vector Machine (SVM) + SMOTE was the best classification algorithm, with accuracy of 0.92. Lastly, the extrapolation of this methodology is to be expected toward other realities and local circumstances, contributing to the fulfillment of the SDGs and the development of individual and collective capacities through the management and direction of projects.
metadata
García Villena, Eduardo and Pascual Barrera, Alina Eugenia and Álvarez, Roberto Marcelo and Dzul López, Luis Alonso and Tutusaus, Kilian and Vidal Mazón, Juan Luis and Miró Vera, Yini Airet and Brie, Santiago and López Flores, Miguel A.
mail
eduardo.garcia@uneatlantico.es, alina.pascual@unini.edu.mx, roberto.alvarez@uneatlantico.es, luis.dzul@uneatlantico.es, kilian.tutusaus@uneatlantico.es, juanluis.vidal@uneatlantico.es, yini.miro@uneatlantico.es, santiago.brie@uneatlantico.es, miguelangel.lopez@uneatlantico.es
(2022)
Evaluation of the Sustainable Development Goals in the Diagnosis and Prediction of the Sustainability of Projects Aimed at Local Communities in Latin America and the Caribbean.
Applied Sciences, 12 (21).
p. 11188.
ISSN 2076-3417
Article
Subjects > Social Sciences
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Financial management is a critical aspect of firms, and entails the strategic planning, direction, and control of financial endeavors. Risk assessment, fraud detection, wealth management, online transactions, customized bond scheme, customer retention, virtual assistant and so on, are a few of the critical areas where Industry 4.0 technologies intervention are highly required for managing firms' finance. It has been identified from the previous studies that they are limited studies that have addressed the significance and application of integrating of Industry 4.0 technologies such as Internet of Things (IoT), cloud computing, big data, robotic process automation (RPA), artificial intelligence (AI), Blockchain, Digital twin, and Metaverse. With the motivation from the above aspects, this study aims to discuss the role of these technologies in the area of financial management of a firm. Based up on the analysis, it has been concluded that these technologies assist to credit risk management based on real-time data; financial data analytics of risk assessment, digital finance, digital auditing, fraud detection, and AI- and IoT- based virtual assistants. This study recommended that digital technologies be deeply integrated into the financial sector to improve service quality and accessibility, as well as the creation of innovative rules that allow for healthy competition among market participants.
metadata
Bisht, Deepa and Singh, Rajesh and Gehlot, Anita and Akram, Shaik Vaseem and Singh, Aman and Caro Montero, Elisabeth and Priyadarshi, Neeraj and Twala, Bhekisipho
mail
UNSPECIFIED
(2022)
Imperative Role of Integrating Digitalization in the Firms Finance: A Technological Perspective.
Electronics, 11 (19).
p. 3252.
ISSN 2079-9292
Article
Subjects > Social Sciences
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Angola, as with many countries on the African continent, has great inequalities or asymmetries between its provinces. At the economic, financial, and technological level, there is a great disparity between them, where it is observed that the province of Luanda is the largest financial business center to the detriment of others, such as Moxico, Zaire, and Cabinda. In the latter, despite the advantages of high oil production, from a regional point of view, they remain almost stagnant in time, in a social dysfunction where the population lives on extractivism and artisanal fishing. This article analyzes the most important events in contemporary regional history, the Portuguese occupation that was the Portuguese colonial rule over Angola (1890–1930) and the civil war that was a struggle between Angolans for control of the country (1975–2002), in the consolidation of the asymmetries between provinces. For this work, a theoretical-reflective study was conducted based on the reading of books, articles, and previous investigations on the phenomenon studied. Considering the interpretation and analysis of the theoretical content obtained through the bibliographic research conducted, this theoretical construction approaches the qualitative approach. We conclude that the deep inequalities between regions and within them, between the provinces studied, originated historically in the form of exploitation of the regions and from the consequences of the war. The asymmetries, observed through the variables studied show that the provinces historically explored and considered object regions present a lower growth compared to those that were considered subject regions in which the applied geopolitical strategy, as they are centers of primary production flows, was different. We also observe that, due to the conflicts of the civil war in the less developed regions, the inequalities have deepened, contributing seriously to a higher level of poverty and a lower development of the provinces where these conflicts took place.
metadata
Catoto Capitango, João Adolfo and Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rojo Gutiérrez, Marco Antonio and Gracia Villar, Mónica and Durántez Prados, Frigdiano Álvaro
mail
UNSPECIFIED, silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, monica.gracia@uneatlantico.es, durantez@uneatlantico.es
(2022)
Inequalities and Asymmetries in the Development of Angola’s Provinces: The Impact of Colonialism and Civil War.
Social Sciences, 11 (8).
p. 334.
ISSN 2076-0760
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
This paper presents the design, development, and testing of an IoT-enabled smart stick for visually impaired people to navigate the outside environment with the ability to detect and warn about obstacles. The proposed design employs ultrasonic sensors for obstacle detection, a water sensor for sensing the puddles and wet surfaces in the user’s path, and a high-definition video camera integrated with object recognition. Furthermore, the user is signaled about various hindrances and objects using voice feedback through earphones after accurately detecting and identifying objects. The proposed smart stick has two modes; one uses ultrasonic sensors for detection and feedback through vibration motors to inform about the direction of the obstacle, and the second mode is the detection and recognition of obstacles and providing voice feedback. The proposed system allows for switching between the two modes depending on the environment and personal preference. Moreover, the latitude/longitude values of the user are captured and uploaded to the IoT platform for effective tracking via global positioning system (GPS)/global system for mobile communication (GSM) modules, which enable the live location of the user/stick to be monitored on the IoT dashboard. A panic button is also provided for emergency assistance by generating a request signal in the form of an SMS containing a Google maps link generated with latitude and longitude coordinates and sent through an IoT-enabled environment. The smart stick has been designed to be lightweight, waterproof, size adjustable, and has long battery life. The overall design ensures energy efficiency, portability, stability, ease of access, and robust features.
metadata
Farooq, Muhammad Siddique and Shafi, Imran and Khan, Harris and Díez, Isabel De La Torre and Breñosa, Jose and Martínez Espinosa, Julio César and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, UNSPECIFIED
(2022)
IoT Enabled Intelligent Stick for Visually Impaired People for Obstacle Recognition.
Sensors, 22 (22).
p. 8914.
ISSN 1424-8220
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Internet of Things (IoT) systems incorporate a multitude of resource-limited devices typically interconnected over Low Power and Lossy Networks (LLNs). Robust IP-based network routing among such constrained IoT devices can be effectively realized using the IPv6 Routing Protocol for LLN (RPL) which is an IETF-standardized protocol. The RPL design features a topology maintenance mechanism based on a version numbering system. However, such a design property makes it easy to initiate Version Number (VN) attacks targeting the stability, lifetime, and performance of RPL networks. Thus the wide deployment of RPL-based IoT networks would be hindered significantly unless internal routing attacks such as the VN attacks are efficiently addressed. In this research work, a lightweight and effective detection and mitigation solution against RPL VN attacks is introduced. With simple modifications to the RPL functionality, a collaborative and distributed security scheme is incorporated into the protocol design (referred to as CDRPL). As the experimental results indicated, it provides a secure and scalable solution enhancing the resilience of the protocol against simple and composite VN attacks in different experimental setups. CDRPL guaranteed fast and accurate attack detection as well as quick topology convergence upon any attack attempt. It also efficiently maintained network stability, control traffic overhead, QoS performance, and energy consumption during different scenarios of the VN attack. Compared to other similar approaches, CDRPL yields better performance results with lightweight node-local processing, no additional entities, and less communication overhead.
metadata
Alsukayti, Ibrahim S. and Singh, Aman
mail
UNSPECIFIED, aman.singh@uneatlantico.es
(2022)
A Lightweight Scheme for Mitigating RPL Version Number Attacks in IoT Networks.
IEEE Access, 10.
pp. 111115-111133.
ISSN 2169-3536
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Mobility and low energy consumption are considered the main requirements for wireless body area sensor networks (WBASN) used in healthcare monitoring systems (HMS). In HMS, battery-powered sensor nodes with limited energy are used to obtain vital statistics about the body. Hence, energy-efficient schemes are desired to maintain long-term and steady connectivity of the sensor nodes. A sheer amount of energy is consumed in activities such as idle listening, excessive transmission and reception of control messages, packet collisions and retransmission of packets, and poor path selection, that may lead to more energy consumption. A combination of adaptive scheduling with an energy-efficient protocol can help select an appropriate path at a suitable time to minimize the control overhead, energy consumption, packet collision, and excessive idle listening. This paper proposes a region-based energy-efficient multipath routing (REMR) approach that divides the entire sensor network into clusters with preferably multiple candidates to represent each cluster. The cluster representatives (CRs) route packets through various clusters. For routing, the energy requirement of each route is considered, and the path with minimum energy requirements is selected. Similarly, end-to-end delay, higher throughput, and packet-delivery ratio are considered for packet routing.
metadata
Akbar, Shuja and Mehdi, Muhammad Mohsin and Jamal, M. Hasan and Raza, Imran and Hussain, Syed Asad and Breñosa, Jose and Martínez Espinosa, Julio César and Pascual Barrera, Alina Eugenia and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, alina.pascual@unini.edu.mx, UNSPECIFIED
(2022)
Multipath Routing in Wireless Body Area Sensor Network for Healthcare Monitoring.
Healthcare, 10 (11).
p. 2297.
ISSN 2227-9032
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The prevalence of anxiety among university students is increasing, resulting in the negative impact on their academic and social (behavioral and emotional) development. In order for students to have competitive academic performance, the cognitive function should be strengthened by detecting and handling anxiety. Over a period of 6 weeks, this study examined how to detect anxiety and how Mano Shakti Yoga (MSY) helps reduce anxiety. Relying on cardiac signals, this study follows an integrated detection-estimation-reduction framework for anxiety using the Intelligent Internet of Medical Things (IIoMT) and MSY. IIoMT is the integration of Internet of Medical Things (wearable smart belt) and machine learning algorithms (Decision Tree (DT), Random Forest (RF), and AdaBoost (AB)). Sixty-six eligible students were selected as experiencing anxiety detected based on the results of self-rating anxiety scale (SAS) questionnaire and a smart belt. Then, the students were divided randomly into two groups: experimental and control. The experimental group followed an MSY intervention for one hour twice a week, while the control group followed their own daily routine. Machine learning algorithms are used to analyze the data obtained from the smart belt. MSY is an alternative improvement for the immune system that helps reduce anxiety. All the results illustrate that the experimental group reduced anxiety with a significant (p < 0.05) difference in group × time interaction compared to the control group. The intelligent techniques achieved maximum accuracy of 80% on using RF algorithm. Thus, students can practice MSY and concentrate on their objectives by improving their intelligence, attention, and memory.
metadata
Pal, Rishi and Adhikari, Deepak and Heyat, Md Belal Bin and Guragai, Bishal and Lipari, Vivian and Brito Ballester, Julién and De la Torre Díez, Isabel and Abbas, Zia and Lai, Dakun
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, vivian.lipari@uneatlantico.es, julien.brito@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED
(2022)
A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY.
Bioengineering, 9 (12).
p. 793.
ISSN 2306-5354
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
β-Thalassemia is one of the dangerous causes of the high mortality rate in the Mediterranean countries. Substantial resources are required to save a β-Thalassemia carriers’ life and early detection of thalassemia patients can help appropriate treatment to increase the carrier’s life expectancy. Being a genetic disease, it can not be prevented however the analysis of several indicators in parents’ blood can be used to detect disorders causing Thalassemia. Laboratory tests for Thalassemia are time-consuming and expensive like high-performance liquid chromatography, Complete Blood Count (CBC) with peripheral smear, genetic test, etc. Red blood indices from CBC can be used with machine learning models for the same task. Despite the available approaches for Thalassemia carriers from CBC data, gaps exist between the desired and achieved accuracy. Moreover, the data imbalance problem is studied well which makes the models less generalizable. This study proposes a highly accurate approach for β-Thalassemia detection using red blood indices from CBC augmented by supervised machine learning. In view of the fact that all the features do not carry predictive information regarding the target variable, this study employs a unified framework of two features selection techniques including Principal Component Analysis (PCA) and Singular Vector Decomposition (SVD). The data imbalance between β-Thalassemia carrier and non-carriers is handled by Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN). Extensive experiments are performed using many state-of-the-art machine learning models and deep learning models. Experimental results indicate the superiority of the proposed approach over existing approaches with an accuracy score of 0.96.
metadata
Rustam, Furqan and Ashraf, Imran and Jabbar, Shehbaz and Tutusaus, Kilian and Mazas Pérez-Oleaga, Cristina and Pascual Barrera, Alina Eugenia and de la Torre Diez, Isabel
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, kilian.tutusaus@uneatlantico.es, cristina.mazas@uneatlantico.es, alina.pascual@unini.edu.mx, UNSPECIFIED
(2022)
Prediction β-Thalassemia carriers using complete blood count features.
Scientific Reports, 12 (1).
ISSN 2045-2322
Article
Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Cerrado
Inglés
Cactus has been used in traditional folk medicine because of its role in treating a number of diseases and conditions. Prickly pear fruit is an excellent source of secondary metabolites (i.e., betalains, flavonoids, and ascorbic acid) with health-promoting properties against many common human diseases, including diabetes, hypertension, hypercholesterolemia, rheumatic pain, gastric mucosa diseases and asthma. In addition, prickly pears are potential candidates for the development of low-cost functional foods because they grow with low water requirements in arid regions of the world. This review describes the main bioactive compounds found in this fruit and shows the in vitro and some clinical studies about the fruit of most important cactus (Opuntia ficus-indica) and its relationship with some chronic diseases. Even though a lot of effort have been done to study the relationship between this fruit and the human health, more studies on Opuntia ficus-indica could help better understand its pharmacological mechanism of action to provide clear scientific evidence to explain its traditional uses, and to identify its therapeutic potential in other diseases.
metadata
Armas Diaz, Yasmany and Machì, Michele and Salinari, Alessia and Mazas Pérez-Oleaga, Cristina and Martínez López, Nohora Milena and Briones Urbano, Mercedes and Cianciosi, Danila
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, mercedes.briones@uneatlantico.es, UNSPECIFIED
(2022)
Prickly pear fruits from "Opuntia ficus-indica" varieties as a source of potential bioactive compounds in the Mediterranean diet.
Mediterranean Journal of Nutrition and Metabolism, 15 (4).
pp. 581-592.
ISSN 1973798X
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Conventional outage management practices in distribution systems are tedious and complex due to the long time taken to locate the fault. Emerging smart technologies and various cloud services offered could be utilized and integrated into the power industry to enhance the overall process, especially in the fault monitoring and normalizing fields in distribution systems. This paper introduces smart fault monitoring and normalizing technologies in distribution systems by using one of the most popular cloud service platforms, the Microsoft Azure Internet of Things (IoT) Hub, together with some of the related services. A hardware prototype was constructed based on part of a real underground distribution system network, and the fault monitoring and normalizing techniques were integrated to form a system. Such a system with IoT integration effectively reduces the power outage experienced by customers in the healthy section of the faulted feeder from approximately 1 h to less than 5 min and is able to improve the System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) in electric utility companies significantly
metadata
Peter, Geno and Stonier, Albert Alexander and Gupta, Punit and Gavilanes, Daniel and Masías Vergara, Manuel and Lung sin, Jong
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, UNSPECIFIED
(2022)
Smart Fault Monitoring and Normalizing of a Power Distribution System Using IoT.
Energies, 15 (21).
p. 8206.
ISSN 1996-1073
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Currently, sustainability is a vital aspect for every nation and organization to accomplish Sustainable Development Goals (SDGs) by 2030. Environmental, social, and governance (ESG) metrics are used to evaluate the sustainability level of an organization. According to the statistics, 53% of respondents in the BlackRock survey are concerned about the availability of low ESG data, which is critical for determining the organization’s sustainability level. This obstacle can be overcome by implementing Industry 4.0 technologies, which enable real-time data, data authentication, prediction, transparency, authentication, and structured data. Based on the review of previous studies, it was determined that only a few studies discussed the implementation of Industry 4.0 technologies for ESG data and evaluation. The objective of the study is to discuss the significance of ESG data and report, which is used for the evaluation of the sustainability of an organization. In this regard, the assimilation of Industry 4.0 technologies (Internet of Things (IoT), artificial intelligence (AI), blockchain, and big data for obtaining ESG data by an organization is detailed presented to study the progress of advancement of these technologies for ESG. On the basis of analysis, this study concludes that consumers are concerned about the ESG data, as most organizations develop inaccurate ESG data and suggest that these digital technologies have a crucial role in framing an accurate ESG report. After analysis a few vital conclusions are drawn such as ESG investment has benefited from AI capabilities, which previously relied on self-disclosed, annualized company information that was susceptible to inherent data issues and biases. Finally, the article discusses the vital recommendations that can be implemented for future work
metadata
Saxena, Archana and Singh, Rajesh and Gehlot, Anita and Akram, Shaik Vaseem and Twala, Bhekisipho and Singh, Aman and Caro Montero, Elisabeth and Priyadarshi, Neeraj
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, elizabeth.caro@uneatlantico.es, UNSPECIFIED
(2022)
Technologies Empowered Environmental, Social, and Governance (ESG): An Industry 4.0 Landscape.
Sustainability, 15 (1).
p. 309.
ISSN 2071-1050
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Technology’s expansion has contributed to the rise in popularity of social media platforms. Twitter is one of the leading social media platforms that people use to share their opinions. Such opinions, sometimes, may contain threatening text, deliberately or non-deliberately, which can be disturbing for other users. Consequently, the detection of threatening content on social media is an important task. Contrary to high-resource languages like English, Dutch, and others that have several such approaches, the low-resource Urdu language does not have such a luxury. Therefore, this study presents an intelligent threatening language detection for the Urdu language. A stacking model is proposed that uses an extra tree (ET) classifier and Bayes theorem-based Bernoulli Naive Bayes (BNB) as the based learners while logistic regression (LR) is employed as the meta learner. A performance analysis is carried out by deploying a support vector classifier, ET, LR, BNB, fully connected network, convolutional neural network, long short-term memory, and gated recurrent unit. Experimental results indicate that the stacked model performs better than both machine learning and deep learning models. With 74.01% accuracy, 70.84% precision, 75.65% recall, and 73.99% F1 score, the model outperforms the existing benchmark study.
metadata
Mehmood, Aneela and Farooq, Muhammad Shoaib and Naseem, Ansar and Rustam, Furqan and Gracia Villar, Mónica and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, monica.gracia@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
Threatening URDU Language Detection from Tweets Using Machine Learning.
Applied Sciences, 12 (20).
p. 10342.
ISSN 2076-3417
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Thyroid disease prediction has emerged as an important task recently. Despite existing approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized and results are not validated either. Predominantly, existing approaches focus on model optimization and the feature engineering part is less investigated. To overcome these limitations, this study presents an approach that investigates feature engineering for machine learning and deep learning models. Forward feature selection, backward feature elimination, bidirectional feature elimination, and machine learning-based feature selection using extra tree classifiers are adopted. The proposed approach can predict Hashimoto’s thyroiditis (primary hypothyroid), binding protein (increased binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome (NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-based selected feature yields the best results with 0.99 accuracy and an F1 score when used with the random forest classifier. Results suggest that the machine learning models are a better choice for thyroid disease detection regarding the provided accuracy and the computational complexity. K-fold cross-validation and performance comparison with existing studies corroborate the superior performance of the proposed approach.
metadata
Chaganti, Rajasekhar and Rustam, Furqan and De La Torre Díez, Isabel and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques.
Cancers, 14 (16).
p. 3914.
ISSN 2072-6694
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
Device-to-device (D2D) communication has attracted many researchers, cellular operators, and equipment makers as mobile traffic and bandwidth demands have increased. It supports direct communication within devices with no need for any intermediate node and, therefore, offers advantage in 5G network while providing wide cell coverage range and frequency reuse. However, establishing acceptable and secure mechanism for D2D communication which ensures confidentiality, integrity, and availability is an issue encountered in this situation. Furthermore, in a resource-constrained IoT environment, these security challenges are more critical and difficult to mitigate, especially during emergence of IoT with 5G network application scenarios. To address these issues, this paper proposed a security mechanism in 5G network for D2D wireless communication dependent on lightweight modified elliptic curve cryptography (LMECC). The proposed scheme follows a proactive routing protocol to discover services, managing link setup, and for data transfer with the aim to reduce communication overhead during user authentication. The proposed approach has been compared against Diffie–Hellman (DH) and ElGamal (ELG) schemes to evaluate the protocol overhead and security enhancement at network edge. Results proved the outstanding performance of the proposed LMECC for strengthening data secrecy with approximate 13% and 22.5% lower overhead than DH and ELG schemes.
metadata
Gupta, Divya and Rani, Shalli and Singh, Aman and Vidal Mazón, Juan Luis and Wang, Han
mail
UNSPECIFIED, UNSPECIFIED, aman.singh@unic.co.ao, juanluis.vidal@uneatlantico.es, UNSPECIFIED
(2022)
Towards Security Mechanism in D2D Wireless Communication: A 5G Network Approach.
Wireless Communications and Mobile Computing, 2022.
pp. 1-9.
ISSN 1530-8669
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
At this time, efforts are being made on a worldwide scale to accomplish sustainable development objectives. It has, thus, now become essential to investigate the part of technology in the accomplishment of these Sustainable Development Goals (SDGs), as this will enable us to circumvent any potential conflicts that may arise. The importance of wastewater management in the accomplishment of these goals has been highlighted in the study. The research focuses on the role of fourth industrial revolution in meeting the Sustainable Goals for 2030. Given that water is the most important resource on the planet and since 11 of the 17 Sustainable Goals are directly related to having access to clean water, effective water management is the most fundamental need for achieving these goals. The age of Industry 4.0 has ushered in a variety of new solutions in many industrial sectors, including manufacturing, water, energy, healthcare, and electronics. This paper examines the present creative solutions in water treatment from an Industry-4.0 viewpoint, focusing on big data, the Internet of Things, artificial intelligence, and several other technologies. The study has correlated the various concepts of Industry 4.0 along with water and wastewater management and also discusses the prior work carried out in this field with help of different technologies. In addition to proposing a way for explaining the operation of I4.0 in water treatment through a systematic diagram, the paper makes suggestions for further research as well.
metadata
Pandey, Shivam and Twala, Bhekisipho and Singh, Rajesh and Gehlot, Anita and Singh, Aman and Caro Montero, Elisabeth and Priyadarshi, Neeraj
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, elizabeth.caro@uneatlantico.es, UNSPECIFIED
(2022)
Wastewater Treatment with Technical Intervention Inclination towards Smart Cities.
Sustainability, 14 (18).
p. 11563.
ISSN 2071-1050
Article
Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Magazines
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.
metadata
Rustam, Furqan and Aslam, Naila and De La Torre Díez, Isabel and Khan, Yaser Daanial and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED
(2022)
White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images.
Healthcare, 10 (11).
p. 2230.
ISSN 2227-9032
2021
Article
Subjects > Psychology
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Cerrado
Inglés
Many earlier studies conducted on sports betting and addiction have examined sports betting in the context of gambling and have not taken into account the specific motivations of sports betting. Therefore, the effects of motivational elements of sports betting on sports betting addiction risk are unknown. The aim of the present study was to examine the effects of motivation factors specific to sports betting on sports betting addiction. Accordingly, three linked studies were conducted. Firstly, to determine sports betting motivations “Sports Betting Motivation Scale (SBMS)” developed and validated. Secondly, to determine the risks of sports betting addiction “Problem Sports Betting Severity Index (PSBSI)” was adapted from Problem Gambling Severity Index (PGSI). Finally, the third study examined effects of the sports betting motivations on sports betting addiction risk. Study one (n=281), study two comprised (n=230), and the final study comprised (n=643) sports fans who bet on sports regularly for 12 months with different motivations. The findings demonstrate that the SBMS appears to be a reliable and valid instrument for assessing sports betting motivations. Also, the findings provided PSBSI validity for the use of the Turkish and sports betting adapted version of PGSI. As a result of the main research, “make money,” “socialization,” and “being in the game” motivations were found to be positive predictors of sports betting addiction risk, while “fun” motivation was a negative predictor. The motivations “recreation/escape,” “knowledge of the game,” and “interest in sport” were found not to be significant predictors of the risk of sports betting addiction.
metadata
Gökce Yüce, Sevda and Yüce, Arif and Katırcı, Hakan and Nogueira-López, Abel and González-Hernández, Juan
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, abel.nogueira@uneatlantico.es, UNSPECIFIED
(2021)
Effects of Sports Betting Motivations on Sports Betting Addiction in a Turkish Sample.
International Journal of Mental Health and Addiction.
ISSN 1557-1874
Article
Subjects > Teaching
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto
Inglés
The purpose of this article was to evaluate the level of satisfaction of a sample of graduates in relation to different online postgraduate programs in the environmental area, as part of the process of continuous improvement in which the educational institution was immersed for the renewal of its accreditation before the corresponding official bodies. Based on the bibliographic review of a series of models and tools, a Likert scale measurement instrument was developed. This instrument, once applied and validated, showed a good level of reliability, with more than three quarters of the participants having a positive evaluation of satisfaction. Likewise, to facilitate the relational study, and after confirming the suitability of performing a factor analysis, four variable grouping factors were determined, which explained a good part of the variability of the instrument’s items. As a result of the analysis, it was found that there were significant values of low satisfaction in graduates from the Eurasian area, mainly in terms of organizational issues and academic expectations. On the other hand, it was observed that the methodological aspects of the “Auditing” and “Biodiversity” programs showed higher levels of dissatisfaction than the rest, with no statistically significant relationships between gender, entry profile or age groups. The methodology followed and the rigor in determining the validity and reliability of the instrument, as well as the subsequent analysis of the results, endorsed by the review of the documented information, suggest that the instrument can be applied to other multidisciplinary programs for decision making with guarantees in the educational field
metadata
García Villena, Eduardo and Pueyo Villa, Silvia and Delgado Noya, Irene and Tutusaus, Kilian and Ruiz Salces, Roberto and Pascual Barrera, Alina Eugenia
mail
eduardo.garcia@uneatlantico.es, silvia.pueyo@uneatlantico.es, irene.delgado@uneatlantico.es, kilian.tutusaus@uneatlantico.es, roberto.ruiz@uneatlantico.es, alina.pascual@unini.edu.mx
(2021)
Instrumentalization of a Model for the Evaluation of the Level of Satisfaction of Graduates under an E-Learning Methodology: A Case Analysis Oriented to Postgraduate Studies in the Environmental Field.
Sustainability, 13 (9).
p. 5112.
ISSN 2071-1050
<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a class="ep_document_link" href="/12747/1/sensors-24-03754%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.
Hafeez Ur Rehman Siddiqui mail , Ambreen Akmal mail , Muhammad Iqbal mail , Adil Ali Saleem mail , Muhammad Amjad Raza mail , Kainat Zafar mail , Aqsa Zaib mail , Sandra Dudley mail , Jon Arambarri mail jon.arambarri@uneatlantico.es, Ángel Gabriel Kuc Castilla mail , Furqan Rustam mail ,
Siddiqui
<a href="/12749/1/fnut-11-1083759.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of “the end of life” is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves’ main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves’ main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Lucia Regolo mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Yasmany Armas Diaz mail , Bruno Mezzetti mail , Maria Elexpuru Zabaleta mail maria.elexpuru@uneatlantico.es, Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Luca Mazzoni mail ,
Regolo
<a class="ep_document_link" href="/12750/1/s41598-024-63831-0.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Efficient deep learning-based approach for malaria detection using red blood cell smears
Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.
Muhammad Mujahid mail , Furqan Rustam mail , Rahman Shafique mail , Elizabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Isabel de la Torre Diez mail , Imran Ashraf mail ,
Mujahid
<a href="/12751/1/s12874-024-02249-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
In contemporary society, depression has emerged as a prominent mental disorder that exhibits exponential growth and exerts a substantial influence on premature mortality. Although numerous research applied machine learning methods to forecast signs of depression. Nevertheless, only a limited number of research have taken into account the severity level as a multiclass variable. Besides, maintaining the equality of data distribution among all the classes rarely happens in practical communities. So, the inevitable class imbalance for multiple variables is considered a substantial challenge in this domain. Furthermore, this research emphasizes the significance of addressing class imbalance issues in the context of multiple classes. We introduced a new approach Feature group partitioning (FGP) in the data preprocessing phase which effectively reduces the dimensionality of features to a minimum. This study utilized synthetic oversampling techniques, specifically Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN), for class balancing. The dataset used in this research was collected from university students by administering the Burn Depression Checklist (BDC). For methodological modifications, we implemented heterogeneous ensemble learning stacking, homogeneous ensemble bagging, and five distinct supervised machine learning algorithms. The issue of overfitting was mitigated by evaluating the accuracy of the training, validation, and testing datasets. To justify the effectiveness of the prediction models, balanced accuracy, sensitivity, specificity, precision, and f1-score indices are used. Overall, comprehensive analysis demonstrates the discrimination between the Conventional Depression Screening (CDS) and FGP approach. In summary, the results show that the stacking classifier for FGP with SMOTE approach yields the highest balanced accuracy, with a rate of 92.81%. The empirical evidence has demonstrated that the FGP approach, when combined with the SMOTE, able to produce better performance in predicting the severity of depression. Most importantly the optimization of the training time of the FGP approach for all of the classifiers is a significant achievement of this research.
Tumpa Rani Shaha mail , Momotaz Begum mail , Jia Uddin mail , Vanessa Yélamos Torres mail vanessa.yelamos@funiber.org, Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Imran Ashraf mail , Md. Abdus Samad mail ,
Shaha