A lightweight deep learning approach for COVID-19 detection using X-ray images with edge federation

Article Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Objective This study aims to develop a lightweight convolutional neural network-based edge federated learning architecture for COVID-19 detection using X-ray images, aiming to minimize computational cost, latency, and bandwidth requirements while preserving patient privacy. Method The proposed method uses an edge federated learning architecture to optimize task allocation and execution. Unlike in traditional edge networks where requests from fixed nodes are handled by nearby edge devices or remote clouds, the proposed model uses an intelligent broker within the federation to assess member edge cloudlets' parameters, such as resources and hop count, to make optimal decisions for task offloading. This approach enhances performance and privacy by placing tasks in closer proximity to the user. DenseNet is used for model training, with a depth of 60 and 357,482 parameters. This resource-aware distributed approach optimizes computing resource utilization within the edge-federated learning architecture. Results The experimental results demonstrate significant improvements in various performance metrics. The proposed method reduces training time by 53.1%, optimizes CPU and memory utilization by 17.5% and 33.6%, and maintains accurate COVID-19 detection capabilities without compromising the F1 score, demonstrating the efficiency and effectiveness of the lightweight convolutional neural network-based edge federated learning architecture. Conclusion Existing studies predominantly concentrate on either privacy and accuracy or load balancing and energy optimization, with limited emphasis on training time. The proposed approach offers a comprehensive performance-centric solution that simultaneously addresses privacy, load balancing, and energy optimization while reducing training time, providing a more holistic and balanced solution for optimal system performance. metadata Alvi, Sohaib Bin Khalid and Nayyer, Muhammad Ziad and Jamal, Muhammad Hasan and Raza, Imran and de la Torre Diez, Isabel and Rodríguez Velasco, Carmen Lilí and Breñosa, Jose and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, carmen.rodriguez@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, UNSPECIFIED (2023) A lightweight deep learning approach for COVID-19 detection using X-ray images with edge federation. DIGITAL HEALTH, 9. ISSN 2055-2076

[img] Text
alvi-et-al-2023-a-lightweight-deep-learning-approach-for-covid-19-detection-using-x-ray-images-with-edge-federation.pdf
Available under License Creative Commons Attribution Non-commercial.

Download (1MB)

Abstract

Objective This study aims to develop a lightweight convolutional neural network-based edge federated learning architecture for COVID-19 detection using X-ray images, aiming to minimize computational cost, latency, and bandwidth requirements while preserving patient privacy. Method The proposed method uses an edge federated learning architecture to optimize task allocation and execution. Unlike in traditional edge networks where requests from fixed nodes are handled by nearby edge devices or remote clouds, the proposed model uses an intelligent broker within the federation to assess member edge cloudlets' parameters, such as resources and hop count, to make optimal decisions for task offloading. This approach enhances performance and privacy by placing tasks in closer proximity to the user. DenseNet is used for model training, with a depth of 60 and 357,482 parameters. This resource-aware distributed approach optimizes computing resource utilization within the edge-federated learning architecture. Results The experimental results demonstrate significant improvements in various performance metrics. The proposed method reduces training time by 53.1%, optimizes CPU and memory utilization by 17.5% and 33.6%, and maintains accurate COVID-19 detection capabilities without compromising the F1 score, demonstrating the efficiency and effectiveness of the lightweight convolutional neural network-based edge federated learning architecture. Conclusion Existing studies predominantly concentrate on either privacy and accuracy or load balancing and energy optimization, with limited emphasis on training time. The proposed approach offers a comprehensive performance-centric solution that simultaneously addresses privacy, load balancing, and energy optimization while reducing training time, providing a more holistic and balanced solution for optimal system performance.

Item Type: Article
Uncontrolled Keywords: Public health, federated learning, edge computing, deep learning
Subjects: Subjects > Biomedicine
Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Date Deposited: 17 Oct 2023 23:30
Last Modified: 17 Oct 2023 23:30
URI: https://repositorio.unic.co.ao/id/eprint/9229

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/9697/1/sensors-23-08958.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A Survey on the Role of Industrial IoT in Manufacturing for Implementation of Smart Industry

The Internet of Things (IoT) is an innovative technology that presents effective and attractive solutions to revolutionize various domains. Numerous solutions based on the IoT have been designed to automate industries, manufacturing units, and production houses to mitigate human involvement in hazardous operations. Owing to the large number of publications in the IoT paradigm, in particular those focusing on industrial IoT (IIoT), a comprehensive survey is significantly important to provide insights into recent developments. This survey presents the workings of the IoT-based smart industry and its major components and proposes the state-of-the-art network infrastructure, including structured layers of IIoT architecture, IIoT network topologies, protocols, and devices. Furthermore, the relationship between IoT-based industries and key technologies is analyzed, including big data storage, cloud computing, and data analytics. A detailed discussion of IIoT-based application domains, smartphone application solutions, and sensor- and device-based IIoT applications developed for the management of the smart industry is also presented. Consequently, IIoT-based security attacks and their relevant countermeasures are highlighted. By analyzing the essential components, their security risks, and available solutions, future research directions regarding the implementation of IIoT are outlined. Finally, a comprehensive discussion of open research challenges and issues related to the smart industry is also presented.

Produção científica

Muhammad Shoaib Farooq mail , Muhammad Abdullah mail , Shamyla Riaz mail , Atif Alvi mail , Furqan Rustam mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Juan Castanedo Galán mail juan.castanedo@uneatlantico.es, Md Abdus Samad mail , Imran Ashraf mail ,

Farooq

<a href="/9698/1/A_Systematic_Survey_of_AI_Models_in_Financial_Market_Forecasting_for_Profitability_Analysis.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis

Artificial intelligence (AI)-based models have emerged as powerful tools in financial markets, capable of reducing investment risks and aiding in selecting highly profitable stocks by achieving precise predictions. This holds immense value for investors, as it empowers them to make data-driven decisions. Identifying current and future trends in multi-class forecasting techniques employed within financial markets, particularly profitability analysis as an evaluation metric is important. The review focuses on examining stud-ies conducted between 2018 and 2023, sourced from three prominent academic databases. A meticulous three-stage approach was employed, encompassing the systematic planning, conduct, and analysis of the se-lected studies. Specifically, the analysis emphasizes technical assessment, profitability analysis, hybrid mod-eling, and the type of results generated by models. Articles were shortlisted based on inclusion and exclusion criteria, while a rigorous quality assessment through ten quality criteria questions, utilizing a Likert-type scale was employed to ensure methodological robustness. We observed that ensemble and hybrid models with long short-term memory (LSTM) and support vector machines (SVM) are being more adopted for financial trends and price prediction. Moreover, hybrid models employing AI algorithms for feature engineering have great potential at par with ensemble techniques. Most studies only employ performance metrics and lack utilization of profitability metrics or investment or trading strategy (simulated or real-time). Similarly, research on multi-class or output is severely lacking in financial forecasting and can be a good avenue for future research.

Producción Científica

Bilal Hassan Ahmed Khattak mail , Imran Shafi mail , Abdul Saboor Khan mail , Emmanuel Soriano Flores mail emmanuel.soriano@uneatlantico.es, Roberto García Lara mail , Md. Abdus Samad mail , Imran Ashraf mail ,

Khattak

<a href="/9907/1/sensors-23-09367-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Internet of Things in Pregnancy Care Coordination and Management: A Systematic Review

The Internet of Things (IoT) has positioned itself globally as a dominant force in the technology sector. IoT, a technology based on interconnected devices, has found applications in various research areas, including healthcare. Embedded devices and wearable technologies powered by IoT have been shown to be effective in patient monitoring and management systems, with a particular focus on pregnant women. This study provides a comprehensive systematic review of the literature on IoT architectures, systems, models and devices used to monitor and manage complications during pregnancy, postpartum and neonatal care. The study identifies emerging research trends and highlights existing research challenges and gaps, offering insights to improve the well-being of pregnant women at a critical moment in their lives. The literature review and discussions presented here serve as valuable resources for stakeholders in this field and pave the way for new and effective paradigms. Additionally, we outline a future research scope discussion for the benefit of researchers and healthcare professionals.

Producción Científica

Mohammad Mobarak Hossain mail , Mohammod Abul Kashem mail , Md. Monirul Islam mail , Md. Sahidullah mail , Sumona Hoque Mumu mail , Jia Uddin mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Isabel de la Torre Diez mail , Imran Ashraf mail , Md Abdus Samad mail ,

Hossain

<a class="ep_document_link" href="/9908/1/e078815.full.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Prehospital acute life-threatening cardiovascular disease in elderly: an observational, prospective, multicentre, ambulance-based cohort study

Objective The aim was to explore the association of demographic and prehospital parameters with short-term and long-term mortality in acute life-threatening cardiovascular disease by using a hazard model, focusing on elderly individuals, by comparing patients under 75 years versus patients over 75 years of age. Design Prospective, multicentre, observational study. Setting Emergency medical services (EMS) delivery study gathering data from two back-to-back studies between 1 October 2019 and 30 November 2021. Six advanced life support (ALS), 43 basic life support and five hospitals in Spain were considered. Participants Adult patients suffering from acute life-threatening cardiovascular disease attended by the EMS. Primary and secondary outcome measures The primary outcome was in-hospital mortality from any cause within the first to the 365 days following EMS attendance. The main measures included prehospital demographics, biochemical variables, prehospital ALS techniques used and syndromic suspected conditions. Results A total of 1744 patients fulfilled the inclusion criteria. The 365-day cumulative mortality in the elderly amounted to 26.1% (229 cases) versus 11.6% (11.6%) in patients under 75 years old. Elderly patients (≥75 years) presented a twofold risk of mortality compared with patients ≤74 years. Life-threatening interventions (mechanical ventilation, cardioversion and defibrillation) were also related to a twofold increased risk of mortality. Importantly, patients suffering from acute heart failure presented a more than twofold increased risk of mortality. Conclusions This study revealed the prehospital variables associated with the long-term mortality of patients suffering from acute cardiovascular disease. Our results provide important insights for the development of specific codes or scores for cardiovascular diseases to facilitate the risk of mortality characterisation.

Producción Científica

Carlos del Pozo Vegas mail , Daniel Zalama-Sánchez mail , Ancor Sanz-Garcia mail , Raúl López-Izquierdo mail , Silvia Sáez-Belloso mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

del Pozo Vegas

<a class="ep_document_link" href="/9931/1/fimmu-14-1289032.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Prevalence and genetic diversity of rotavirus in Bangladesh during pre-vaccination period, 1973-2023: a meta-analysis

Introduction: Rotavirus infection is a major cause of mortality among children under 5 years in Bangladesh. There is lack of integrated studies on rotavirus prevalence and genetic diversity during 1973 to 2023 in Bangladesh. Methods: This meta-analysis was conducted to determine the prevalence, genotypic diversity and seasonal distribution of rotavirus during pre-vaccination period in Bangladesh. This study included published articles on rotavirus A, rotavirus B and rotavirus C. We used Medline, Scopus and Google Scholar for published articles. Selected literatures were published between 1973 to 2023. Results: This study detected 12431 research articles published on rotavirus. Based on the inclusion criteria, 29 of 75 (30.2%) studies were selected. Molecular epidemiological data was taken from 29 articles, prevalence data from 29 articles, and clinical symptoms from 19 articles. The pooled prevalence of rotavirus was 30.1% (95% CI: 22%-45%, p = 0.005). Rotavirus G1 (27.1%, 2228 of 8219) was the most prevalent followed by G2 (21.09%, 1733 of 8219), G4 (11.58%, 952 of 8219), G9 (9.37%, 770 of 8219), G12 (8.48%, 697 of 8219), and G3 (2.79%, 229 of 8219), respectively. Genotype P[8] (40.6%, 2548 of 6274) was the most prevalent followed by P[4] (12.4%, 777 of 6274) and P[6] (6.4%, 400 of 6274), respectively. Rotavirus G1P[8] (19%) was the most frequent followed by G2P [4] (9.4%), G12P[8] (7.2%), and G9P[8], respectively. Rotavirus infection had higher odds of occurrence during December and February (aOR: 2.86, 95% CI: 2.43-3.6, p = 0.001). Discussion: This is the first meta-analysis including all the studies on prevalence, molecular epidemiology, and genetic diversity of rotavirus from 1973 to 2023, pre-vaccination period in Bangladesh. This study will provide overall scenario of rotavirus genetic diversity and seasonality during pre-vaccination period and aids in policy making for rotavirus vaccination program in Bangladesh. This work will add valuable knowledge for vaccination against rotavirus and compare the data after starting vaccination in Bangladesh.

Producción Científica

Nadim Sharif mail , Nazmul Sharif mail , Afsana Khan mail , Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Isabel De la Torre Díez mail , Anowar Khasru Parvez mail , Shuvra Kanti Dey mail ,

Sharif