Nerve Root Compression Analysis to Find Lumbar Spine Stenosis on MRI Using CNN

Article Subjects > Biomedicine
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Lumbar spine stenosis (LSS) is caused by low back pain that exerts pressure on the nerves in the spine. Detecting LSS is a significantly important yet difficult task. It is detected by analyzing the area of the anteroposterior diameter of the patient’s lumbar spine. Currently, the versatility and accuracy of LSS segmentation algorithms are limited. The objective of this research is to use magnetic resonance imaging (MRI) to automatically categorize LSS. This study presents a convolutional neural network (CNN)-based method to detect LSS using MRI images. Radiological grading is performed on a publicly available dataset. Four regions of interest (ROIs) are determined to diagnose LSS with normal, mild, moderate, and severe gradings. The experiments are performed on 1545 axial-view MRI images. Furthermore, two datasets—multi-ROI and single-ROI—are created. For training and testing, an 80:20 ratio of randomly selected labeled datasets is used, with fivefold cross-validation. The results of the proposed model reveal a 97.01% accuracy for multi-ROI and 97.71% accuracy for single-ROI. The proposed computer-aided diagnosis approach can significantly improve diagnostic accuracy in everyday clinical workflows to assist medical experts in decision making. The proposed CNN-based MRI image segmentation approach shows its efficacy on a variety of datasets. Results are compared to existing state-of-the-art studies, indicating the superior performance of the proposed approach. metadata Shahzadi, Turrnum and Ali, Muhammad Usman and Majeed, Fiaz and Sana, Muhammad Usman and Martínez Díaz, Raquel and Samad, Md Abdus and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, raquel.martinez@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2023) Nerve Root Compression Analysis to Find Lumbar Spine Stenosis on MRI Using CNN. Diagnostics, 13 (18). p. 2975. ISSN 2075-4418

[img] Text
diagnostics-13-02975.pdf
Available under License Creative Commons Attribution.

Download (2MB)

Abstract

Lumbar spine stenosis (LSS) is caused by low back pain that exerts pressure on the nerves in the spine. Detecting LSS is a significantly important yet difficult task. It is detected by analyzing the area of the anteroposterior diameter of the patient’s lumbar spine. Currently, the versatility and accuracy of LSS segmentation algorithms are limited. The objective of this research is to use magnetic resonance imaging (MRI) to automatically categorize LSS. This study presents a convolutional neural network (CNN)-based method to detect LSS using MRI images. Radiological grading is performed on a publicly available dataset. Four regions of interest (ROIs) are determined to diagnose LSS with normal, mild, moderate, and severe gradings. The experiments are performed on 1545 axial-view MRI images. Furthermore, two datasets—multi-ROI and single-ROI—are created. For training and testing, an 80:20 ratio of randomly selected labeled datasets is used, with fivefold cross-validation. The results of the proposed model reveal a 97.01% accuracy for multi-ROI and 97.71% accuracy for single-ROI. The proposed computer-aided diagnosis approach can significantly improve diagnostic accuracy in everyday clinical workflows to assist medical experts in decision making. The proposed CNN-based MRI image segmentation approach shows its efficacy on a variety of datasets. Results are compared to existing state-of-the-art studies, indicating the superior performance of the proposed approach.

Item Type: Article
Uncontrolled Keywords: lumbar spine stenosis; magnetic resonance imaging; deep learning; image processing
Subjects: Subjects > Biomedicine
Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Date Deposited: 28 Sep 2023 23:30
Last Modified: 28 Sep 2023 23:30
URI: https://repositorio.unic.co.ao/id/eprint/8999

Actions (login required)

View Item View Item

<a href="/9697/1/sensors-23-08958.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A Survey on the Role of Industrial IoT in Manufacturing for Implementation of Smart Industry

The Internet of Things (IoT) is an innovative technology that presents effective and attractive solutions to revolutionize various domains. Numerous solutions based on the IoT have been designed to automate industries, manufacturing units, and production houses to mitigate human involvement in hazardous operations. Owing to the large number of publications in the IoT paradigm, in particular those focusing on industrial IoT (IIoT), a comprehensive survey is significantly important to provide insights into recent developments. This survey presents the workings of the IoT-based smart industry and its major components and proposes the state-of-the-art network infrastructure, including structured layers of IIoT architecture, IIoT network topologies, protocols, and devices. Furthermore, the relationship between IoT-based industries and key technologies is analyzed, including big data storage, cloud computing, and data analytics. A detailed discussion of IIoT-based application domains, smartphone application solutions, and sensor- and device-based IIoT applications developed for the management of the smart industry is also presented. Consequently, IIoT-based security attacks and their relevant countermeasures are highlighted. By analyzing the essential components, their security risks, and available solutions, future research directions regarding the implementation of IIoT are outlined. Finally, a comprehensive discussion of open research challenges and issues related to the smart industry is also presented.

Produção científica

Muhammad Shoaib Farooq mail , Muhammad Abdullah mail , Shamyla Riaz mail , Atif Alvi mail , Furqan Rustam mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Juan Castanedo Galán mail juan.castanedo@uneatlantico.es, Md Abdus Samad mail , Imran Ashraf mail ,

Farooq

<a href="/9698/1/A_Systematic_Survey_of_AI_Models_in_Financial_Market_Forecasting_for_Profitability_Analysis.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis

Artificial intelligence (AI)-based models have emerged as powerful tools in financial markets, capable of reducing investment risks and aiding in selecting highly profitable stocks by achieving precise predictions. This holds immense value for investors, as it empowers them to make data-driven decisions. Identifying current and future trends in multi-class forecasting techniques employed within financial markets, particularly profitability analysis as an evaluation metric is important. The review focuses on examining stud-ies conducted between 2018 and 2023, sourced from three prominent academic databases. A meticulous three-stage approach was employed, encompassing the systematic planning, conduct, and analysis of the se-lected studies. Specifically, the analysis emphasizes technical assessment, profitability analysis, hybrid mod-eling, and the type of results generated by models. Articles were shortlisted based on inclusion and exclusion criteria, while a rigorous quality assessment through ten quality criteria questions, utilizing a Likert-type scale was employed to ensure methodological robustness. We observed that ensemble and hybrid models with long short-term memory (LSTM) and support vector machines (SVM) are being more adopted for financial trends and price prediction. Moreover, hybrid models employing AI algorithms for feature engineering have great potential at par with ensemble techniques. Most studies only employ performance metrics and lack utilization of profitability metrics or investment or trading strategy (simulated or real-time). Similarly, research on multi-class or output is severely lacking in financial forecasting and can be a good avenue for future research.

Producción Científica

Bilal Hassan Ahmed Khattak mail , Imran Shafi mail , Abdul Saboor Khan mail , Emmanuel Soriano Flores mail emmanuel.soriano@uneatlantico.es, Roberto García Lara mail , Md. Abdus Samad mail , Imran Ashraf mail ,

Khattak

<a href="/9907/1/sensors-23-09367-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Internet of Things in Pregnancy Care Coordination and Management: A Systematic Review

The Internet of Things (IoT) has positioned itself globally as a dominant force in the technology sector. IoT, a technology based on interconnected devices, has found applications in various research areas, including healthcare. Embedded devices and wearable technologies powered by IoT have been shown to be effective in patient monitoring and management systems, with a particular focus on pregnant women. This study provides a comprehensive systematic review of the literature on IoT architectures, systems, models and devices used to monitor and manage complications during pregnancy, postpartum and neonatal care. The study identifies emerging research trends and highlights existing research challenges and gaps, offering insights to improve the well-being of pregnant women at a critical moment in their lives. The literature review and discussions presented here serve as valuable resources for stakeholders in this field and pave the way for new and effective paradigms. Additionally, we outline a future research scope discussion for the benefit of researchers and healthcare professionals.

Producción Científica

Mohammad Mobarak Hossain mail , Mohammod Abul Kashem mail , Md. Monirul Islam mail , Md. Sahidullah mail , Sumona Hoque Mumu mail , Jia Uddin mail , Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Isabel de la Torre Diez mail , Imran Ashraf mail , Md Abdus Samad mail ,

Hossain

<a href="/9908/1/e078815.full.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Prehospital acute life-threatening cardiovascular disease in elderly: an observational, prospective, multicentre, ambulance-based cohort study

Objective The aim was to explore the association of demographic and prehospital parameters with short-term and long-term mortality in acute life-threatening cardiovascular disease by using a hazard model, focusing on elderly individuals, by comparing patients under 75 years versus patients over 75 years of age. Design Prospective, multicentre, observational study. Setting Emergency medical services (EMS) delivery study gathering data from two back-to-back studies between 1 October 2019 and 30 November 2021. Six advanced life support (ALS), 43 basic life support and five hospitals in Spain were considered. Participants Adult patients suffering from acute life-threatening cardiovascular disease attended by the EMS. Primary and secondary outcome measures The primary outcome was in-hospital mortality from any cause within the first to the 365 days following EMS attendance. The main measures included prehospital demographics, biochemical variables, prehospital ALS techniques used and syndromic suspected conditions. Results A total of 1744 patients fulfilled the inclusion criteria. The 365-day cumulative mortality in the elderly amounted to 26.1% (229 cases) versus 11.6% (11.6%) in patients under 75 years old. Elderly patients (≥75 years) presented a twofold risk of mortality compared with patients ≤74 years. Life-threatening interventions (mechanical ventilation, cardioversion and defibrillation) were also related to a twofold increased risk of mortality. Importantly, patients suffering from acute heart failure presented a more than twofold increased risk of mortality. Conclusions This study revealed the prehospital variables associated with the long-term mortality of patients suffering from acute cardiovascular disease. Our results provide important insights for the development of specific codes or scores for cardiovascular diseases to facilitate the risk of mortality characterisation.

Producción Científica

Carlos del Pozo Vegas mail , Daniel Zalama-Sánchez mail , Ancor Sanz-Garcia mail , Raúl López-Izquierdo mail , Silvia Sáez-Belloso mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

del Pozo Vegas

<a class="ep_document_link" href="/9931/1/fimmu-14-1289032.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Prevalence and genetic diversity of rotavirus in Bangladesh during pre-vaccination period, 1973-2023: a meta-analysis

Introduction: Rotavirus infection is a major cause of mortality among children under 5 years in Bangladesh. There is lack of integrated studies on rotavirus prevalence and genetic diversity during 1973 to 2023 in Bangladesh. Methods: This meta-analysis was conducted to determine the prevalence, genotypic diversity and seasonal distribution of rotavirus during pre-vaccination period in Bangladesh. This study included published articles on rotavirus A, rotavirus B and rotavirus C. We used Medline, Scopus and Google Scholar for published articles. Selected literatures were published between 1973 to 2023. Results: This study detected 12431 research articles published on rotavirus. Based on the inclusion criteria, 29 of 75 (30.2%) studies were selected. Molecular epidemiological data was taken from 29 articles, prevalence data from 29 articles, and clinical symptoms from 19 articles. The pooled prevalence of rotavirus was 30.1% (95% CI: 22%-45%, p = 0.005). Rotavirus G1 (27.1%, 2228 of 8219) was the most prevalent followed by G2 (21.09%, 1733 of 8219), G4 (11.58%, 952 of 8219), G9 (9.37%, 770 of 8219), G12 (8.48%, 697 of 8219), and G3 (2.79%, 229 of 8219), respectively. Genotype P[8] (40.6%, 2548 of 6274) was the most prevalent followed by P[4] (12.4%, 777 of 6274) and P[6] (6.4%, 400 of 6274), respectively. Rotavirus G1P[8] (19%) was the most frequent followed by G2P [4] (9.4%), G12P[8] (7.2%), and G9P[8], respectively. Rotavirus infection had higher odds of occurrence during December and February (aOR: 2.86, 95% CI: 2.43-3.6, p = 0.001). Discussion: This is the first meta-analysis including all the studies on prevalence, molecular epidemiology, and genetic diversity of rotavirus from 1973 to 2023, pre-vaccination period in Bangladesh. This study will provide overall scenario of rotavirus genetic diversity and seasonality during pre-vaccination period and aids in policy making for rotavirus vaccination program in Bangladesh. This work will add valuable knowledge for vaccination against rotavirus and compare the data after starting vaccination in Bangladesh.

Producción Científica

Nadim Sharif mail , Nazmul Sharif mail , Afsana Khan mail , Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Isabel De la Torre Díez mail , Anowar Khasru Parvez mail , Shuvra Kanti Dey mail ,

Sharif