Adherence to the Mediterranean-Style Eating Pattern and Macular Degeneration: A Systematic Review of Observational Studies

Article Subjects > Nutrition Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Abierto Inglés Age-related macular degeneration (AMD) is a serious degenerative disease affecting the eyes, and is the main cause of severe vision loss among people >55 years of age in developed countries. Its onset and progression have been associated with several genetic and lifestyle factors, with diet appearing to play a pivotal role in the latter. In particular, dietary eating patterns rich in plant foods have been shown to lower the risk of developing the disease, and to decrease the odds of progressing to more advanced stages in individuals already burdened with early AMD. We systematically reviewed the literature to analyse the relationship between the adherence to a Mediterranean diet, a mainly plant-based dietary pattern, and the onset/progression of AMD. Eight human observational studies were analysed. Despite some differences, they consistently indicate that higher adherence to a Mediterranean eating pattern lowers the odds of developing AMD and decreases the risk of progression to more advanced stages of the disease, establishing the way for preventative measures emphasizing dietary patterns rich in plant-foods metadata Gastaldello, Annalisa and Giampieri, Francesca and Quiles, José L. and Navarro-Hortal, María D. and Aparicio Obregón, Silvia and García Villena, Eduardo and Tutusaus, Kilian and De Giuseppe, Rachele and Grosso, Giuseppe and Cianciosi, Danila and Forbes-Hernández, Tamara Y. and Nabavi, Seyed M. and Battino, Maurizio mail UNSPECIFIED, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, UNSPECIFIED, silvia.aparicio@uneatlantico.es, eduardo.garcia@uneatlantico.es, kilian.tutusaus@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, maurizio.battino@uneatlantico.es (2022) Adherence to the Mediterranean-Style Eating Pattern and Macular Degeneration: A Systematic Review of Observational Studies. Nutrients, 14 (10). p. 2028. ISSN 2072-6643

[img] Text
nutrients-14-02028-v3.pdf - Published Version
Available under License Creative Commons Attribution.

Download (399kB)

Abstract

Age-related macular degeneration (AMD) is a serious degenerative disease affecting the eyes, and is the main cause of severe vision loss among people >55 years of age in developed countries. Its onset and progression have been associated with several genetic and lifestyle factors, with diet appearing to play a pivotal role in the latter. In particular, dietary eating patterns rich in plant foods have been shown to lower the risk of developing the disease, and to decrease the odds of progressing to more advanced stages in individuals already burdened with early AMD. We systematically reviewed the literature to analyse the relationship between the adherence to a Mediterranean diet, a mainly plant-based dietary pattern, and the onset/progression of AMD. Eight human observational studies were analysed. Despite some differences, they consistently indicate that higher adherence to a Mediterranean eating pattern lowers the odds of developing AMD and decreases the risk of progression to more advanced stages of the disease, establishing the way for preventative measures emphasizing dietary patterns rich in plant-foods

Item Type: Article
Uncontrolled Keywords: macular degeneration; retinal disease; eye disease; maculopathy; drusen; Mediterranean diet; plant-based diets; dietary pattern; eating pattern
Subjects: Subjects > Nutrition
Divisions: Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Articles and books
Date Deposited: 31 May 2022 18:14
Last Modified: 10 Jul 2023 23:30
URI: https://repositorio.unic.co.ao/id/eprint/2117

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Producción Científica

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a class="ep_document_link" href="/15198/1/nutrients-16-03859.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Producción Científica

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

<a href="/15444/1/s41598-024-79106-7.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Roman urdu hate speech detection using hybrid machine learning models and hyperparameter optimization

With the rapid increase of users over social media, cyberbullying, and hate speech problems have arisen over the past years. Automatic hate speech detection (HSD) from text is an emerging research problem in natural language processing (NLP). Researchers developed various approaches to solve the automatic hate speech detection problem using different corpora in various languages, however, research on the Urdu language is rather scarce. This study aims to address the HSD task on Twitter using Roman Urdu text. The contribution of this research is the development of a hybrid model for Roman Urdu HSD, which has not been previously explored. The novel hybrid model integrates deep learning (DL) and transformer models for automatic feature extraction, combined with machine learning algorithms (MLAs) for classification. To further enhance model performance, we employ several hyperparameter optimization (HPO) techniques, including Grid Search (GS), Randomized Search (RS), and Bayesian Optimization with Gaussian Processes (BOGP). Evaluation is carried out on two publicly available benchmarks Roman Urdu corpora comprising HS-RU-20 corpus and RUHSOLD hate speech corpus. Results demonstrate that the Multilingual BERT (MBERT) feature learner, paired with a Support Vector Machine (SVM) classifier and optimized using RS, achieves state-of-the-art performance. On the HS-RU-20 corpus, this model attained an accuracy of 0.93 and an F1 score of 0.95 for the Neutral-Hostile classification task, and an accuracy of 0.89 with an F1 score of 0.88 for the Hate Speech-Offensive task. On the RUHSOLD corpus, the same model achieved an accuracy of 0.95 and an F1 score of 0.94 for the Coarse-grained task, alongside an accuracy of 0.87 and an F1 score of 0.84 for the Fine-grained task. These results demonstrate the effectiveness of our hybrid approach for Roman Urdu hate speech detection.

Producción Científica

Waqar Ashiq mail , Samra Kanwal mail , Adnan Rafique mail , Muhammad Waqas mail , Tahir Khurshaid mail , Elizabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Alicia Bustamante Alonso mail alicia.bustamante@uneatlantico.es, Imran Ashraf mail ,

Ashiq

<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro

<a class="ep_document_link" href="/14915/1/s41598-024-74357-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model

Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.

Producción Científica

Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,

Rustam