Advancement in medical report generation: current practices, challenges, and future directions
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Artículos y libros
Universidad de La Romana > Investigación > Producción Científica
Cerrado
Inglés
The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions. It is challenging to accurately diagnose diseases, and many methods are proposed to help radiologists, both traditional and deep learning-based. Automatic report generation is widely used to tackle this issue as it streamlines the process and lessens the burden of manual labeling of images. This paper introduces a systematic literature review with a focus on analyses and evaluating existing research on medical report generation. This SLR follows a proper protocol for the planning, reviewing, and reporting of the results. This review recognizes that the most commonly used deep learning models are encoder-decoder frameworks (45 articles), which provide an accuracy of around 92–95%. Transformers-based models (20 articles) are the second most established method and achieve an accuracy of around 91%. The remaining articles explored in this SLR are attention mechanisms (10), RNN-LSTM (10), Large language models (LLM-10), and graph-based methods (4) with promising results. However, these methods also face certain limitations such as overfitting, risk of bias, and high data dependency that impact their performance. The review not only highlights the strengths and challenges of these methods but also suggests ways to handle them in the future to increase the accuracy and timely generation of medical reports. The goal of this review is to direct radiologists toward methods that lessen their workload and provide precise medical diagnoses.
metadata
Rehman, Marwareed; Shafi, Imran; Ahmad, Jamil; Osorio García, Carlos Manuel; Pascual Barrera, Alina Eugenia y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, carlos.osorio@uneatlantico.es, alina.pascual@unini.edu.mx, SIN ESPECIFICAR
(2024)
Advancement in medical report generation: current practices, challenges, and future directions.
Medical & Biological Engineering & Computing.
ISSN 0140-0118
Resumen
The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions. It is challenging to accurately diagnose diseases, and many methods are proposed to help radiologists, both traditional and deep learning-based. Automatic report generation is widely used to tackle this issue as it streamlines the process and lessens the burden of manual labeling of images. This paper introduces a systematic literature review with a focus on analyses and evaluating existing research on medical report generation. This SLR follows a proper protocol for the planning, reviewing, and reporting of the results. This review recognizes that the most commonly used deep learning models are encoder-decoder frameworks (45 articles), which provide an accuracy of around 92–95%. Transformers-based models (20 articles) are the second most established method and achieve an accuracy of around 91%. The remaining articles explored in this SLR are attention mechanisms (10), RNN-LSTM (10), Large language models (LLM-10), and graph-based methods (4) with promising results. However, these methods also face certain limitations such as overfitting, risk of bias, and high data dependency that impact their performance. The review not only highlights the strengths and challenges of these methods but also suggests ways to handle them in the future to increase the accuracy and timely generation of medical reports. The goal of this review is to direct radiologists toward methods that lessen their workload and provide precise medical diagnoses.
| Tipo de Documento: | Artículo |
|---|---|
| Palabras Clave: | Automated medical health services; Deep learning; Image processing; Public health; Report generation |
| Clasificación temática: | Materias > Ingeniería |
| Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Artículos y libros Universidad de La Romana > Investigación > Producción Científica |
| Depositado: | 22 Ene 2025 23:30 |
| Ultima Modificación: | 22 Ene 2025 23:30 |
| URI: | https://repositorio.unic.co.ao/id/eprint/16269 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
<a href="/17849/1/1-s2.0-S2590005625001043-main.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a href="/17856/1/fpubh-13-1654645.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Physical activity in children and adolescents represents one of the most important lifestyle factors to determine current and future health. Aim: The aim of the study is to assess the lifestyle and dietary factors linked to physical activity in younger populations across five countries in the Mediterranean region. Design: A total of 2,011 parents of children and adolescents (age range 6–17 years) participating to a preliminary survey of the DELICIOUS project were investigated to determine children's adequate physical activity level (identified using the short form of the international physical activity questionnaire) as well as diet quality parameters [measured as Youth-Healthy Eating Index (Y-HEI)] and eating and lifestyle factors (i.e., meal habits, sleep duration, screen time, etc.). Logistic regression analyses were performed to assess the odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between variables of interest. Results: Younger children of younger parents currently working had higher rates and probability to have adequate physical activity. Multivariate analysis showed that children and adolescents who had breakfast (OR = 1.88, 95% CI: 1.38, 2.56) and often ate with their family (OR = 1.80, 95% CI: 0.90, 3.61) were more likely to have an adequate level of physical activity. Children and adolescents who reported a sleep duration (8–10 h) closest to the recommended one were significantly more likely to achieve adequate levels of physical activity (OR = 1.88, 95% CI: 1.38, 2.56). Conversely, those with more than 4 h of daily screen time were less likely to engage in adequate physical activity (OR = 0.77, 95% CI: 0.54, 1.10). Furthermore, children and adolescents in the highest tertile of YEHI scores showed a 60% greater likelihood of engaging in adequate physical activity (OR = 1.60, 95% CI: 1.27, 2.01). Conclusion: These results emphasize the importance of promoting healthy diet and lifestyle habits, including structured and high quality shared meals, sufficient sleep, and screen time moderation, as key strategies to support active behaviors in younger populations. Future interventions should focus on reinforcing these behaviors through parental guidance and community-based initiatives to foster lifelong healthy habits.
Alice Rosi mail , Francesca Scazzina mail , Maria Antonieta Touriz Bonifaz mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Achraf Ammar mail , Khaled Trabelsi mail , Osama Abdelkarim mail , Mohamed Aly mail , Evelyn Frias-Toral mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Lorenzo Monasta mail , Nunzia Decembrino mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Rosi
<a class="ep_document_link" href="/17857/1/excli2025-8779.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Polyphenols are naturally occurring compounds that can be found in plant-based foods, including fruits, vegetables, nuts, seeds, herbs, spices, and beverages, the use of which has been linked to enhanced brain health and cognitive function. These natural molecules are broadly classified into two main groups: flavonoids and non-flavonoid polyphenols, the latter including phenolic acids, stilbenes, and tannins. Flavonoids are primarily known for their potent antioxidant properties, which help neutralize harmful reactive oxygen species (ROS) in the brain, thereby reducing oxidative stress, a key contributor to neurodegenerative diseases. In addition to their antioxidant effects, flavonoids have been shown to modulate inflammation, enhance neuronal survival, and support neurogenesis, all of which are critical for maintaining cognitive function. Phenolic acids possess strong antioxidant properties and are believed to protect brain cells from oxidative damage. Neuroprotective effects of these molecules can also depend on their ability to modulate signaling pathways associated with inflammation and neuronal apoptosis. Among polyphenols, hydroxycinnamic acids such as caffeic acid have been shown to enhance blood-brain barrier permeability, which may increase the delivery of other protective compounds to the brain. Another compound of interest is represented by resveratrol, a stilbene extensively studied for its potential neuroprotective properties related to its ability to activate the sirtuin pathway, a molecular signaling pathway involved in cellular stress response and aging. Lignans, on the other hand, have shown promise in reducing neuroinflammation and oxidative stress, which could help slow the progression of neurodegenerative diseases and cognitive decline. Polyphenols belonging to different subclasses, such as flavonoids, phenolic acids, stilbenes, and lignans, exert neuroprotective effects by regulating microglial activation, suppressing pro-inflammatory cytokines, and mitigating oxidative stress. These compounds act through multiple signaling pathways, including NF-κB, MAPK, and Nrf2, and they may also influence genetic regulation of inflammation and immune responses at brain level. Despite their potential for brain health and cognitive function, polyphenols are often characterized by low bioavailability, something that deserves attention when considering their therapeutic potential. Future translational studies are needed to better understand the right dosage, the overall diet, the correct target population, as well as ideal formulations allowing to overcome bioavailability limitations.
Justyna Godos mail , Giuseppe Carota mail , Giuseppe Caruso mail , Agnieszka Micek mail , Evelyn Frias-Toral mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Julién Brito Ballester mail julien.brito@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, José L. Quiles mail jose.quiles@uneatlantico.es,
Godos
<a class="ep_document_link" href="/17859/1/s41598-025-18105-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Enhanced FPGA-based smart power grid simulation using Heun and Piecewise analytic method
The increasing complexity of modern power systems requires engineers to design, build, and test equipment with a high degree of accuracy. The demand for precise equipment design, testing, and evaluation has reached extraordinary levels within modern power systems. To meet this challenge, engineers rely heavily on real-time simulators, which are essential tools for assessing power network dynamics. This study introduces a novel approach, an adaptable and cost-effective simulator, poised to revolutionize traditional hardware-in-the-loop (HIL) systems. Leveraging field-programmable gate arrays (FPGAs) and a comprehensive implementation of Heun and Piecewise analytic methods (PAM), provided simulator offers unparalleled capabilities for embedded real-time simulation of smart grids, ensuring swift and accurate measurements. Augmented by Python-based process simulation and integrated with industry-standard tools like Modelica and MATLAB, the proposed system promises versatility and efficiency. Through comprehensive testing, including rigorous evaluations of excitation system responses to diverse scenarios such as voltage set-point variations, automatic voltage regulator step responses, and fault conditions, we demonstrate the simulator’s robustness and precision. Experimental findings underscore its potential as an effective alternative to conventional HIL systems, marking a significant advancement in smart grid simulation technology.
Urfa Gul mail , Hafiz Muhammad Raza Ur Rehman mail , Muhammad Junaid Gul mail , Gerardo Méndez Mezquita mail , Alina Eugenia Pascual Barrera mail alina.pascual@unini.edu.mx, Imran Ashraf mail ,
Gul
<a class="ep_document_link" href="/17844/1/frai-1-1572645.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A systematic review of deep learning methods for community detection in social networks
Introduction: The rapid expansion of generated data through social networks has introduced significant challenges, which underscores the need for advanced methods to analyze and interpret these complex systems. Deep learning has emerged as an effective approach, offering robust capabilities to process large datasets, and uncover intricate relationships and patterns. Methods: In this systematic literature review, we explore research conducted over the past decade, focusing on the use of deep learning techniques for community detection in social networks. A total of 19 studies were carefully selected from reputable databases, including the ACM Library, Springer Link, Scopus, Science Direct, and IEEE Xplore. This review investigates the employed methodologies, evaluates their effectiveness, and discusses the challenges identified in these works. Results: Our review shows that models like graph neural networks (GNNs), autoencoders, and convolutional neural networks (CNNs) are some of the most commonly used approaches for community detection. It also examines the variety of social networks, datasets, evaluation metrics, and employed frameworks in these studies. Discussion: However, the analysis highlights several challenges, such as scalability, understanding how the models work (interpretability), and the need for solutions that can adapt to different types of networks. These issues stand out as important areas that need further attention and deeper research. This review provides meaningful insights for researchers working in social network analysis. It offers a detailed summary of recent developments, showcases the most impactful deep learning methods, and identifies key challenges that remain to be explored.
Mohamed El-Moussaoui mail , Mohamed Hanine mail , Ali Kartit mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Helena Garay mail helena.garay@uneatlantico.es, Isabel de la Torre Díez mail ,
El-Moussaoui
