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Abstract: Infectious Disease Prediction aims to anticipate the aspects of both seasonal epidemics and
future pandemics. However, a single model will most likely not capture all the dataset’s patterns and
qualities. Ensemble learning combines multiple models to obtain a single prediction that uses the
qualities of each model. This study aims to develop a stacked ensemble model to accurately predict
the future occurrences of infectious diseases viewed at some point in time as epidemics, namely,
dengue, influenza, and tuberculosis. The main objective is to enhance the prediction performance of
the proposed model by reducing prediction errors. Autoregressive integrated moving average, expo-
nential smoothing, and neural network autoregression are applied to the disease dataset individually.
The gradient boosting model combines the regress values of the above three statistical models to
obtain an ensemble model. The results conclude that the forecasting precision of the proposed stacked
ensemble model is better than that of the standard gradient boosting model. The ensemble model
reduces the prediction errors, root-mean-square error, for the dengue, influenza, and tuberculosis
dataset by approximately 30%, 24%, and 25%, respectively.

Keywords: autoregressive integrated moving average; epidemiology; exponential smoothing;
ensemble; gradient boosting; infectious disease; neural network autoregression; pandemic; stacking

MSC: 68T05; 68T07

1. Introduction

Infectious diseases profess [1] a critical threat to the well-being of world populations.
Epidemiological models have been used as practical [2] devices during flare-ups in human,
animal, and plant populations. The capacity to precisely anticipate outbreaks provides a
mechanism [3] for governments and healthcare sectors to react to the pandemics conve-
niently, empowering the impact to be lessened and limited assets to be spared. The early
prediction of infectious diseases [4,5] is essential as it would considerably help mitigate
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the spread of the same and improve control capabilities. The proposed stacked ensemble
model is used to accurately predict the future occurrences of infectious diseases viewed at
some point in time as epidemics, namely, dengue, influenza, and tuberculosis.

Dengue fever (DF), induced by dengue viruses [6], is an intense mosquito-borne
contamination. In 2018 and 2019, Hong Kong reported [7] 163 and 197 confirmed DF
cases, including 29 and one local cases, and 134 and 196 imported [8] cases, respectively.
Seasonal influenza [9,10], commonly known as the ‘flu” prompted by influenza viruses, is a
severe respiratory tract infection. In November 2019, a flare-up of HIN1 [7] was recorded
in Iran, with 56 deaths and 4000 people hospitalized. Tuberculosis [11] is a significant
communicable disease in Hong Kong. There are almost 4500 reported instances [7] of TB in
Hong Kong, consistently every year.

Time series models [12] are of significant interest in the literature. These models
analyze historical monitoring data to predict epidemiological behaviors. Bi et al. [13,14]
employed an existing mathematical model to predict the Zika virus epidemic, suggest-
ing that there is no practicality in using the continuous optimal control strategies, and
they examined the epidemic control crisis of the infectious disease epidemic approach.
Mabhalle et al. [15] exploited predictive analytics to predict the spread of COVID-19 in the
short term. Xi et al. [16] proposed a prediction model based on a deep residual network
to predict influenza epidemics by integrating the spatio-temporal properties of influenza
activity, allowing compelling influenza predictions at finer scales within urban areas.
Zhang et al. [17] evaluated the performance of a dynamic Bayesian network (DBN) in infec-
tious diseases surveillance. The study found that sample size is essential for identifying
the dynamic relations among multiple variables. Siriyasatien et al. [18] addressed some
challenges in epidemic outbreak prediction, such as developing robust dynamic forecasting
models, handling big and uncertain data, and processing the semantics of exogenous data.

Predicting infectious diseases for decision-making is challenging. Moreover, a single
model [19] may not be able to capture all the characteristics of the data structure accurately.
However, ensemble learning can take care of this issue [20] by combining predictions
from models with diverse qualities and leveraging each model’s strengths. Stacking is
an ensemble learning technique, which combines heterogeneous learners to build a more
robust model. Different models are stacked up; first, we have n number of base models
that are trained parallelly, and the results of the base models are fed to train the Tier-2
model after which the predictions are obtained. This technique will help in exploiting
the strengths of the models used to build the ensemble and hence enhancing the accuracy
of the overall ensemble model. This study proposes a novel-stacking ensemble model
in which the primary learning algorithms are auto-regressive integrated moving average
(ARIMA), exponential smoothing (ETS), and neural network auto-regression (NNAR); these
algorithms are selected based on their performance and predictive power. The secondary
learning algorithm Gradient Boosting Regression Tree (GBRT) is used to combine the
above three models. First, in the proposed ensemble, the individual models are optimally
trained using the original disease training set, and then the fitted values of each model are
combined using a weighted average technique. Based on the performance of each model,
the weights are assigned manually. The combined weighted-fitted predictions are then fed
to the XGBoost model. The parameters of the XGBoost model are tuned to train the model
and to obtain robust forecast values. In light of the facts mentioned above and descriptions,
the main contributions of this work are:

e Developing a weighted-stacked ensemble model using linear and nonlinear
statistical models.

e Enhancing the prediction accuracy of the proposed model by optimally training each
base model.

e Predicting the future occurrences of infectious diseases viewed at some point as
epidemics, namely, dengue, influenza, and tuberculosis.

This study aims to enhance the prediction performance by lessening the prediction
errors. The accuracy of the proposed stacked model is compared with the accuracy of the
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standard Gradient Boosting model. The accuracy measures used to check the performance
are the root-mean-square error (RMSE) and mean absolute error (MAE). The study infers
that the proposed model has a minor prediction error and performs better than the standard
ensemble model. The remaining manuscript is organized as follows. Section 2 discusses the
work related to some existing models developed in the past. Section 3 describes the data
collection and preprocessing steps, and explains the implementation steps and the methods
used to develop the proposed model. Results and Discussions are briefly summarized in
Sections 4 and 5. Section 6 concludes the manuscript and suggests further works in the topic.

2. Related Work

Zhang et al. [12] described a study to evaluate and compare four-time series models,
namely the regression model, exponential smoothing model, autoregressive integrated
moving average (ARIMA), and support vector machine (SVM). The data for nine types
of infectious diseases were collected through mainland China’s national public health
surveillance system. The results inferred that no single model is superior to others, and
SVM outperformed ARIMA and the other two models for most cases of infectious disease.
Mehrmolaei and Keyvanpour [21] reviewed significant work examining the time series
forecasting models in statistical application areas. They proposed a novel approach using
a mean estimation error for time series forecasting to enhance the ARIMA model. The
results indicated that the procedure described can improve the accuracy in predicting time
series data. Song et al. [22] predicted influenza incidences using the time series analysis
method. Before proceeding to implement the various models, the dataset was checked
for the presence of a time series component, i.e., seasonality. If there is a presence of
seasonality, the seasonal autoregression integrated moving average (SARIMA) is used, and
if the dataset shows no seasonality, then the ARIMA model is used.

Hyndman et al. [23] comprehended all the exponential smoothing models in a state-
space framework, which allowed the computation of prediction intervals, likelihood, and
model selection criteria. The proposed model by the authors supposedly performs better
for short-term forecasts, i.e., six-periods-ahead forecast. Xuan et al. [24] proposed a novel
prediction technique based on gradient boosting decision trees for predicting candidate
drug-target interactions. The model ascertains multiple decision trees with the elicited
features and, thus, assists in lessening the influence of class imbalance. The preliminary
results show that the gradient boosting-based model outperforms other state-of-the-art
approaches for drug-target interaction prediction.

Wang et al. [19] compared the performance of conventional time series models and
deep learning algorithms in the case of malaria prediction and examined the application
advantage of stacking strategies in the domain of infectious disease forecasting. The
“ARIMA, STL + ARIMA, BP-ANN, and LSTM” network models were applied individually
to malaria and meteorological data of Yunnan Province from 2011 to 2017. The predictive
accuracy of each model was evaluated using: “root-mean-square error” (RMSE), “mean
absolute scaled error” (MASE), and “mean absolute deviation” (MAD) measures. Moreover,
“gradient-boosting regression trees” (GBRTs) were used to combine the above four models
in the stacking framework. The RMSEs of the four base models were 13.176, 14.543, 9.571,
and 7.208; the MASEs were 0.469, 0.472, 0.296, and 0.266; and the MAD were 6.403, 7.658,
5.871, and 5.691, respectively. The RMSE, MASE, and MAD values of the ensemble model
decreased to 6.810, 0.224, and 4.625, respectively, after using the stacking framework.

3. Materials and Methods

Ensemble learning [25] consolidates predictions from different models to improve a
model’s performance or reduce the probability of a poor selection. For example, in the
gradient boosting ensemble technique [19], models are built by learning from past mistakes
in every iteration. If some model has poor predictions, the other upcoming models try
to compensate this by performing comparatively well on the dataset and improving the
resulting ensemble’s performance. By combining individual models, the ensemble model
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tends to reduce the bias and the variance [26], the two most essential features expected
from a model, to generate a robust learner that is more flexible and less data-sensitive.

The variant methods for combining diverse learners [27] are bagging, boosting, and
stacking (Figure 1). Unlike bagging and boosting, stacking trains the tier-2 learner by
combining the predictions from a bunch of different models as base/tier-1 learners trained
in parallel. Stacking achieves the [27] independence between diverse learners by parallel-
combining base models and the dependence between learners by introducing the meta-
learner sequentially. Consequently, it leads to a higher forecast precision and a lower
possibility of overfitting. A general stacking framework is shown in Figure 2. In the
proposed model, tier-1 learners are ARIMA, ETS, and NNAR models, and the tier-2 learning
algorithm is Extreme Gradient Boosting.

Ensemble Methods

! Bl 1

B\

Bagging \Boosting | Stacking
\{ b
« Homogeneous Learners « Homogeneous Learners « Heterogeneous Learners
« Parallel Learning « Sequential Learning « Parallel Learning
« e.g. Random Forest « e.g. Gradient Boosting « The Proposed Model

Figure 1. Ensemble learning techniques.
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Figure 2. General stacking framework.

The data [28] for dengue fever, influenza, and tuberculosis infectious diseases with re-
spect to time are shown in Figure 3. The three different health problems, dengue, influenza,
and tuberculosis, are chosen to check the robustness of the developed ensemble model on
various application domains.

3.1. Development of Stacked Ensemble Model

The implementation steps of the proposed model are shown in Figure 4. The steps
involved in the process of developing the novel-Stacked Ensemble model are:

1.  Collect the monthly datasets for each dengue, influenza, and tuberculosis disease.

2. Divide each dataset into a training set and a testing set. Each dataset comprises ten years
of monthly reported cases, of which 80% of the data (from the year 2010 to 2017) are
taken as the training set and 20% (the years 2018 and 2019) are taken as the testing set.

3. The datasets are not skewed much and are ordinarily distributed; hence, no data
transformation steps are required.
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v Cases Reported

No.of Dengue Fever

Each training set is then passed as input to the ARIMA, ETS, and NNAR models
in parallel, and the models are trained until they generate minimum training errors.
As the datasets have seasonal dependencies, these are removed by differencing the
datasets according to their seasonality, after which they are fed to the base models.
The fitted values from each model are then combined using the weighted average
technique. The weights are assigned manually based on the training accuracy of each
model. The model with higher training accuracy is given a higher weight. This step
is performed so that the model whose fitted and actual values do not differ much is
given more weightage than others to improve the accuracy of the stacked model.
The fitted values resulting from the above step are then fed to the gradient boosting
algorithm. The algorithm’s parameters, the number of times the algorithm is executed
(nround), and the learning rate of the model (eta) are manually tuned. Tuning of the
algorithm increases the overall performance and hence generates fewer errors.

The accuracy of the proposed model is then estimated by evaluating its performance
metrics in terms of errors. After the model is trained, the proposed model is used to
predict 2018 and 2019. The predicted and the test set values are then compared to
calculate the errors.

Cases Reported

Noof Influenza

(a) (b)

orted

josis Cases Regx

Noof Tubercu

(©)

Figure 3. Time series graph of infectious disease dataset. (a) Dengue dataset; (b) Influenza dataset;
(c) Tuberculosis dataset.
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Figure 4. Development process of stacked ensemble model.

All the coding, implementation, and development steps are executed using the
R programming language and analyzed in RStudio software. Algorithm 1 is the pseu-
docode for developing the stacked ensemble model.

Algorithm 1 Generating Stacked Ensemble Model

Input: Disease Time Series Data D = {d;, d, ,dy)
Total number of observations n = 120
Sampling Frequency f =12
Base Learners Predictions B={B;, By, ... ...
Meta Learner Predictions M(B)
Output: M (Prediction for unknown/test data)
1. Disease dataset is collected and sampled based on the frequency f.
2. Sampled dataset is divided into train and test sets:
Train=n*0.8
Test =n *0.2
3. STL decomposition is done for training dataset:
Fori=1to Train do
Td < decompose(d;) //Decompose the data into trend, seasonal and random components
//Stacked Ensemble Learning
4. Decomposed data is fed to Base Learners:
Fori=1tordo
For j =1 to Train do
B; = B(d))
5. Integrating the predictions from base learners:
Fori=1tordo
WP < X w; * B; //Integrating predictions by weighted average technique
// w; is the weight assigned to each base learner
6. Training of Meta-Learner:
M — M(WP)
7. Making predictions or forecasting for test data:
Fori=1toTestdo
M M(d;)

’ Br(d))

3.1.1. Training of Auto-Regressive Integrated Moving Average Model

ARIMA models [29] are the most prevailing models for anticipating a time series that
can be made stationary by differencing if necessary. The ARIMA model’s fundamental
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notion is to treat the time-series data as a random series and fit the time series data by
applying a mathematical model. The disease time-series datasets collected are seasonal;
therefore, the SARIMA model is adopted, represented as ARIMA (p,d,q) (F,D,Q)n, where
‘p’ is the number of lag observations—*“order of autoregression,” ‘d’ is the degree of
“differencing” to make data stationary, ‘q” is the number of “lagged forecast errors”—"order
of moving average,” (P,D,Q) are the seasonal parts similar to the nonseasonal parts of the
model, and n is the “number of observations per year,” which is 12 for monthly disease
datasets. The “autocorrelation” (ACF) and “partial autocorrelation” (PACF) plots can be
used to calculate the p and q values of the model. The lag at which the ACF plot converges
to zero is the value for the q parameter, and the point at which the PACF plot reaches zero is
the value for the p parameter. The ARIMA model equation [29] when the data are seasonal

is as follows: o ((Sd(SD ) {9(3)6( ”)et}
t = n Ot | =\ pB)p(B")

¢(B)p(B")
where :
qo(B):l—q)lB—...—gopBP )
0(B) =1+6;B+...+6,B1
@(B") =1—¢@B"—... —¢@pB""

0(B") =1+ 6,B" +...+ 6oB"

o represents the actual dataset value at time t, O; represents the fitted value from
ARIMA at time ¢, €; is the random error/noise at time ¢, 8¢ is nonseasonal differencing
and 07 is seasonal differencing, ¢, 6 are used as nonseasonal autoregressive (AR) and
moving average (MA) components, respectively, and ¢, 0 are used for seasonal AR and
MA components, respectively. B is the backshift operator, which causes the observation
that it multiplies to be shifted backward in time by one period. This operator simplifies the
ARIMA equation, which is otherwise complicated because of the differencing term.

3.1.2. Training of Exponential Smoothing Model

The exponential Smoothing Method [30] is a family of forecasting models that uses
weighted averages of past observations to forecast new values. The purpose is to give more
attention to immediate values in the series. It combines Error (E), Trend (T), and Seasonal
(S) components in smoothing estimation. Each term can be combined either in an additive
(A) or multiplicative (M) manner or excluded (N) from the model. Generally, the model
is represented as ETS (A/M, A/M/N, A/M/N). The forecast equation [30] for the ETS
model, which fits the influenza dataset, is written as:

ETS(A,N,A) = Fyypp = L1+ 560 +e
Level : lt = lt—l + wet
Seasonal : s; = sy, + yer
where 0 <a <1;,0<y<1—u

@

E +n|t Tepresents forecast values, f; is the training data at time ¢,  is the number of

data points to be predicted, ¢; = f; — Iﬁt‘t,l is the forecast error at time ¢, [; is the unknown
level/state, s; is the unknown season/state, and « and <y are the smoothing parameters.

3.1.3. Training of Neural Network AutoRegression Model

Artificial neural networks (ANN) [31] are prediction models used to mimic the basic
mathematical patterns that the brain shows. “A neural network is a layered network of
neurons, the predictors as inputs in the bottom layer, and the forecasts as outputs in the top
layer” [19]. Sometimes a hidden/middle layer of “neurons” may be present. The NNAR
model is where the lagged data points of the time series data are given as inputs to the
neural network. The model is represented as NNAR (p,P k), where p and P are the number
of nonseasonal and seasonal immediate datapoints used as predictors, and k represents the
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number of hidden layer nodes. The equation [31] of the NNAR model for the given data at
the time is written as:

P = f(o;-1) +e 3)

2 represents the forecast values, f is the neural network function with k hidden nodes,
and ¢; is normally distributed error series with a constant variance.

3.1.4. Construction of Tier-2 Learner Algorithm, GBRM

Gradient boosting is a machine learning [27,32] method for regression and classifica-
tion problems, to design a prediction/ensemble [33] model that is a weighted sum of weak
learners. The weak learners are aggregated to form robust learners iteratively. The models
trained individually are combined before modeling the gradient boosting algorithm to
forecast infectious diseases. Let Oy, F;, and D; be the fitted values from the ARIMA, ETS,
and NNAR models, respectively. Based on the training accuracy, which is the root-mean-
square error of the model, which is shown in Table 1 for each model, weights are assigned
manually to these heterogeneous models. The fitted values from the models are multiplied
by their corresponding weights and summed up. Monte Carlo simulations are applied to
find the suitable weights corresponding to each model. The resulting weighted average
values are given as:

Wt:wl*ét+w2*ﬁt+W3*pt 4)

Table 1. Training errors (RMSE) of Tier-1 models.

Dengue Influenza Tuberculosis
ARIMA 11.42 13.55 36.23
ETS 9.75 12.23 31.23
NNAR 9.99 17.60 36.43

Immediately, these weighted average values are fed to the tier-2 models. The proposed
model uses the XGBoost algorithm as a tier-2 learner algorithm, which implements gradient
boosting regression/decision trees.

3.2. Performance Analysis

In this study, two error-index parameters are used to evaluate the overall performance
of the proposed stacking ensemble model. The RMSE and MAE of different prediction
models are compared to measure the prediction [8] accuracy. Assuming #; as the predicted
value of the diseases at time ¢ and o as the actual dataset value at time ¢, the equations [34]
for the error metrics mentioned above are as follows:

T_ 0r — 11 2
RMSE — Z”(Tt 2 5)

X qlor — il

AE
M T

4. Result Analysis
4.1. Data Collection and Preprocessing

The data are collected from the “official government website of Hong Kong” [28] for
all three diseases. In the modeling process, for each disease, the data from 2010 to 2017 are
used as the training set with 96 observations, and the data for the year 2018 and 2019 are
used for testing purposes with 24 observations. The data are also decomposed into trend
and seasonal components to observe the pattern before modeling. The dengue dataset
shows an “increasing trend.” The influenza dataset shows an increasing trend until 2018,
and then the cases decrease in 2019. The tuberculosis dataset shows a “decreasing trend.”
All the datasets have a periodical seasonality drive. The peak period for the influenza
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disease by observing the dataset is from January to March. February contributes 9.93% of
the total cases, followed by March and January, which is 9.54% and 9.47% of the actual cases,
respectively. This seasonal effect must be removed before modeling using the first-order or
second-order differencing of the dataset depending upon the method used.

4.2. Results

The dengue fever, influenza, and tuberculosis datasets have 120 observations com-
prising ten years of data from 2010 to 2019. For training and validation purposes, these
datasets are divided into train and test sets. Over the training set, the tier-1 models of the
proposed method are applied one by one in parallel.

From the forecast package in R, auto.arima() is used to train the ARIMA model.
The best model generated from the monthly dengue dataset is ARIMA (0,1,1)(1,0,0)12,
differentiating the data once to make it stationary, having one nonseasonal MA term and
one seasonal AR term. This model is chosen because it has the lowest second-order Akaike
Information Criteria (AICc) of 573.99 compared to other model parameters. The model
equation is written as:

(1 —0.90B) * €
(1-—0.25B12)

To train the ETS model for the dengue dataset, ets() is used from the forecast package

in R. The ETS (A,N,A) model best fits the data with AICc of 401.31. The model contains an

additive error, no trend, and seasonal additive components. The forecast equation of the
model is shown below:

Ot = 5101} = (6)

ﬁt+h|t =l 14+8—n+ely =11 +0.2097 % etst = sty + 0.0001 * e; (7)

From the nnfor package in R, nnetar() is used to train the NNAR model on the dengue
dataset. After applying the model multiple times, the NNAR (11,1,6) model best fits the
data. It indicates that 11 immediate values of the dataset are used as predictors, which is,
by default, chosen by optimally fitting the linear model to the seasonally adjusted data. As
the p-value is not specified while applying the model, it is, by default, 1 for seasonal time
series, and six hidden nodes are there in the network, calculated as 2 +g+1 ,i.e., 1”21“. The
model creates an average of 20 networks, each of which is a 12-6-1 network, which means
twelve input/predictor nodes (11 nonseasonal and one seasonal), six hidden nodes, and
one output node. The network is implemented iteratively for forecasting. The first network
out of the 20 networks is implemented. The fitted values of this network are used as inputs
for the second network. This process continues until all the requisite forecasts are calculated.

Similarly, ARIMA (0,0,1)(1,0,0) 12 best fits the influenza dataset, indicating one non-
seasonal MA term and one seasonal AR term. The data are stationary; therefore, no
differencing is required. The model has the lowest AICc of 644.44. The model equation can
be written as:

~ _ (1+057B) * e
Ot =t 8
f T T (1-029B12) ®
The ETS (A,N,A) best fits the data with the lowest AICc value of 434.53, indicating an
additive error, no trend, and seasonal additive components. The forecast equation can be
written as:

ﬁt+h|t =l 1+8—n+els =11 +0.198 x ;8¢ = 84—y, + 0.00011 * ¢; 9)

The NNAR (7,1,4) best fits the data after applying it multiple times, indicating seven
nonseasonal predictors, one seasonal predictor, and four hidden nodes, all calculated the
same as before. The model creates an average of 20 networks, each of which is an 8-4-1
network indicating eight input/predictors’ nodes—seven nonseasonal and one seasonal—
four hidden nodes, and one output node.
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ARIMA (0,0,0)(1,1,0)12 best fits the tuberculosis dataset, indicating only one seasonal
AR term. Seasonal differentiation is required to make the series stationary. This model is
chosen because it has the lowest AICc of 473.13 compared to other model parameters. The
model equation can be written as:

€t

.
Or = 0120t = (770 355m2)

(10)
The ETS (A,N,A) model best fits the data with an AICc of —1172.12, indicating an

additive error and seasonal additive components. The following is the forecast equation of
the model:

Froppe = L1+ st—n + ety = [y + 01191 % ess¢ = s + 0.0005 * e (11)

After applying it multiple times, the NNAR (1,1,2) best fits the data, indicating one
nonseasonal predictor, one seasonal predictor, and two hidden nodes. The model creates an
average of 20 networks, each of which is a 2-2-1 network indicating two input/predictors
nodes—one nonseasonal and one seasonal—two hidden nodes, and one output node.

After the tier-1 models of the proposed method have been trained individually, the
predictions are fed to the tier-2 GB model. The xgb() statement from the xgboost package
in R is used to train the extreme gradient boosting algorithm. The parameters are tuned
to obtain a more robust model. First, the objective parameter is set to “reg: linear” for
linear regression. For dengue fever, the model runs iteratively 25 times. Keeping all the
previous parameters alike, the model’s learning rate (eta, ranges from 0 to 1) is tuned until
the model generates the minimum error. The optimal value for eta is calculated as 0.3. A low
eta value implies that the model is more robust to overfitting the data. Similarly, the model
runs iteratively eight times for influenza disease, and the optimum value for eta is 0.4; for
tuberculosis disease, the model runs iteratively 20 times, and the optimum value for eta is 0.5.

5. Discussion

Before developing the proposed model and implementing it on the three disease
datasets, choosing the base models and the tier-2 model is required. The dengue fever,
influenza, and tuberculosis infectious diseases data are fed to various standard linear and
nonlinear models. The training accuracies are then evaluated to determine the models
required to build the ensemble. The RMSE for each model is then compared to observe
the performance of the models. From Table 2, it is observed that out of all the standard
models, ARIMA, ETS, and NNAR have performed better by producing minimum RMSE
errors. Hence, these three models are chosen as the base models for building the ensemble.
The preferred base models are a combination of linear and nonlinear models, which is
an intelligent selection as it will help capture both the linear and nonlinear behavior of
the datasets. Further, a tier-2 model is required to build the stacked ensemble, which is
trained using the regressor values gained from the trained base models to obtain the disease
forecasts. To achieve this decision, a comparison between standard models, i.e., Random
Forest (RF) and XG Boost (XGB), is made by applying them to the datasets individually.
Table 3 represents that the standard XG Boost model is better for the tier-2 learner algorithm
because it has a smaller RMSE than RF. Moreover, the literature [19] has shown that
applying gradient boosting regression trees as a meta learner is more suitable because
it gives promising results. The stacked ensemble model can now be implemented and
analyzed on the given datasets.
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Table 2. Error comparison of various linear and nonlinear models.

Datasets Naive SNaive SES Holt’s Winter ETS ARIMA NNAR
Dengue 7.39 6.62 6.38 5.59 4.60 5.56 5.11
Influenza 8.06 10.81 7.89 8.20 6.76 7.06 6.21
Tuberculosis 49.48 40.10 40.31 33.86 26.77 33.57 0.99
Table 3. RMSE Error Comparison of Standard RF and XGB Model.
Models Dengue Influenza Tuberculosis
Random Forest 14.71 13.41 30.94
XG Boost 13.75 8.82 28.64

After applying ARIMA, ETS, and NNAR models to the infectious disease dataset, the
fitted curves are shown in Figure 5. Instead of passing the predictions directly to train the
boosting model, the fitted values from each model are combined by averaging the values.
The average value is calculated by assigning some weight to each fitted value. Here, the
weight given is inversely proportional to the error generated by the model.

1
j X — 12
wi o 12)

where w; is the weight associated with the model 7, and e; is the error generated by model i.
The weighted average value is then fed to train the boosting model and to predict future
occurrences. The equation gives the final weights assigned to each model:

Wi = 0.25% O; +0.65 % F; +0.10 B, (13)
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Figure 5. Application of Tier-1 models on infectious disease datasets. (a) Fitted curves dengue dataset,
(b) fitted curves influenza dataset, (c) fitted curves tuberculosis dataset.
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The novel-stacked ensemble model proposed is used to predict infectious disease
for 2019. The accuracy of the proposed model is then compared with the accuracy of the
existing ensemble model, i.e., XGBoost applied to the same dataset. After calculating the
accuracy of both the proposed ensemble model and the XGB model, it is found that the
proposed stacked model is performing better than the XGB model. Table 4 shows the
error comparison between the existing models and the proposed model when applied to
all the datasets. When applied to the dengue fever dataset, the MAE and RMSE of the
proposed ensemble model are 6.99 and 10.33, respectively, which are 40.5% and 30.67%
reductions compared to the corresponding MAE and RMSE of the XGB model. For the
influenza dataset, the MAE and RMSE of the proposed model are 5.21 and 6.71, respectively,
which are 17.3% and 24% reductions compared to the corresponding MAE and RMSE XGB
model. Moreover, the MAE and RMSE of the proposed model for the tuberculosis dataset
are 17.82 and 21.27, respectively, which are 19.66% and 25.73% reductions compared to
the corresponding MAE and RMSE XGB model. A prediction graph for dengue fever,
influenza, and tuberculosis cases for both the model for 2018 and 2019 is drawn to view the
forecast outcomes and shown in Figure 6.

Table 4. Error Comparison of Proposed Ensemble Model and state-of-the Models.

Dengue Influenza Tuberculosis
MAE RMSE MAE RMSE MAE RMSE
SVM 10.98 14.80 12.19 13.11 32.60 40.29
RF 16.5 18.94 12.19 13.41 25.30 30.94
XGB 11.75 14.90 6.30 8.83 22.18 28.64
ENSEMBLE 6.99 10.33 5.21 6.71 17.82 21.27
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Figure 6. Prediction graphs of XGB and proposed ensemble for disease dataset. (a) Forecast for
dengue dataset, (b) forecast for influenza dataset, (c) forecast for tuberculosis dataset.
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The stacked ensemble model’s predictions almost capture the pattern exhibited by the
test set compared to the XGB model. For the dengue dataset, the ensemble cannot capture
the peaks perfectly, because other environmental factors such as rainfall and humidity also
influence the spikes in the data. However, compared to the XGB model, it has performed well.
In addition, the proposed ensemble has captured the peaks and troughs for the other two
datasets ideally compared to the XGB model. It can be inferred that the proposed model will
perform exceptionally well when any external factor does not influence the data.

In addition, before developing the model and analyzing its advantages over the state-
of-the-art models, the Susceptible Infected Recovered (SIR) [35] model implementation has
been performed on the three disease datasets. Considering all the factors into account, the
approx. RMSE of the model for the dengue dataset is 153, for the influenza dataset, the
RMSE is 76, and for the tuberculosis dataset, the RMSE is 103, which is much higher than
the errors obtained from the proposed model.

The models and techniques used consider only the past occurrences of the disease
dataset to predict future epidemic outbreaks. Many external and environmental factors can
impact the spread of disease transmission. Paying attention to the disease time series and
analyzing the influence of environmental factors, socio-economic factors, human behavior,
and other factors on the disease outbursts might give more robust and reliable forecasts,
e.g., whether predictors such as temperature, rainfall, and humidity can influence future
tuberculosis incidences. However, due to the limited availability or reliability of these input
data, the stacked model developed focuses only on the past occurrence data.

6. Conclusions and Future Work

Infectious disease is a severe public health issue that compromises a person’s health
and can be transmitted extensively. It is essential to foretell future disease outbreaks and
take relating measures in this context. Therefore, this study is conducted to accurately
predict future occurrences of dengue fever, influenza, and tuberculosis epidemics. The
main motive of this study is to establish a prediction model that is less prone to errors than
existing models. The proposed stacked ensemble model is an ensemble of the statistical
time series regression models and the boosting regression model. The ensemble model has
reduced the prediction errors (RMSE) for the dengue, influenza, and tuberculosis dataset
by approximately 30%, 24%, and 25%. Exceptionally, the prediction performance examined
in this study indicates that the proposed weighted stacked ensemble model is better than
the standard XGB model; therefore, the proposed model can be effectively applied in these
three disease forecasting fields.

For future work, one can examine the performance of the proposed stacked ensemble
for other infectious disease data samples. Other statistical nonlinear models can also
be used as a meta-learner to combine the predictions from base learners in the stacking
framework. One can use the same model that is performing best among the base learners
as a meta-learner to examine the model’s performance. The proposed model can also
predict future COVID-19 outbreaks by incorporating the effects of external/environmental
factors such as rainfall, humidity, and temperature on the data; one can find the correlation
between these factors and the dataset to find the best fit model.
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