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Abstract: Artificial intelligence has made substantial progress in medicine. Automated dental imag-
ing interpretation is one of the most prolific areas of research using AI. X-ray and infrared imaging
systems have enabled dental clinicians to identify dental diseases since the 1950s. However, the
manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperi-
enced dentists. Thus, researchers have employed different advanced computer vision techniques,
and machine- and deep-learning models for dental disease diagnoses using X-ray and near-infrared
imagery. Despite the notable development of AI in dentistry, certain factors affect the performance
of the proposed approaches, including limited data availability, imbalanced classes, and lack of
transparency and interpretability. Hence, it is of utmost importance for the research community to
formulate suitable approaches, considering the existing challenges and leveraging findings from the
existing studies. Based on an extensive literature review, this survey provides a brief overview of
X-ray and near-infrared imaging systems. Additionally, a comprehensive insight into challenges faced
by researchers in the dental domain has been brought forth in this survey. The article further offers
an amalgamative assessment of both performances and methods evaluated on public benchmarks
and concludes with ethical considerations and future research avenues.

Keywords: E-health services; healthcare; deep learning; image processing; medical imaging

1. Introduction

Due to the outbreak of COVID-19, several countries have been affected, leading to
a global emergency. The rise in COVID-19 has brought challenges in maintaining pa-
tients’ dental health and providing urgent dental care to mitigate risks of missed diagnosis.
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Artificial intelligence (AI) has evolved rapidly in terms of complexity, diversity, and compu-
tational capabilities, especially in medicine [1,2]. AI has emerged as one of the prospective
technologies in healthcare, making significant progress in predictive machine-learning
models for dental care [3]. The potential applications of AI apply to dental practices and
play a significant role in practice management. Dental clinicians may deploy AI systems as
a supplemental tool in providing precise dental diagnoses and planning treatments along
with early detection of dental conditions leading to improved patient outcomes [4].

Moreover, different techniques implemented to aid in dental disease diagnosis have
led to the introduction of different imaging systems, including X-ray autoradiography
(intraoral and extraoral) imaging and near-infrared imaging. X-ray imaging systems have
been used widely for pneumonia and COVID-19 detection [5,6]; furthermore, they have
become a norm in dentistry for identifying dental lesions, normal and abnormal dental
structures, and predicting treatment outcomes. However, a safer method with non-ionizing
radiation is also employed by dentists for diagnosing caries and lesions, known as near-
infrared imaging. In dentistry, dental ailments are primarily identified using images of
the oral cavity each shot from a different angle; a largely manual process. Thus, human
inference plays a significant role in analyzing X-ray imagery to recognize dental structures,
bone loss, and cavities.

Several automated systems have been explored in recent times for the dental diagnosis
process [7–13]. However, certain issues need to be addressed including limited datasets,
class imbalance, limited generalizability, lack of transparency, and interpretability. Another
concern is the lack of external validation. Similarly, machine- and deep-learning techniques
have not been utilized to their full potential to be integrated into routine dentistry. Addition-
ally, there are certainly ethical considerations that need to be taken into account. Current
state-of-the-art approaches still require improvement to tackle the challenges mentioned
above. Hence, this survey aims to provide an in-depth analysis of X-ray and near-infrared
image-based dental disease diagnosis. Moreover, the identified research gaps and future
research directions are discussed thoroughly in the following sections.

Recently, different public datasets have been released, and several machine- and
deep-learning-based disease identification frameworks have been introduced. However,
the existing surveys [7–13] lack benchmarking of the existing approaches on public datasets.
The surveys also lack a review of other imaging systems, such as near-infrared, and their
associated challenges. To our knowledge, no published work presents a comprehensive
performance analysis of the approaches on benchmark public datasets.

This article presents a systematic survey of existing literature on clinical applications
of AI using X-ray and near-infrared imaging, and discusses the limitations and challenges
associated with the application. The main contributions include:

• Discussions related to the problems unique to dental disease diagnosis and the chal-
lenges associated with those techniques.

• Propose a taxonomy classifying the existing literature in X-ray and near-infrared
imaging, identifying current trends.

• An in-depth analysis of the recently employed dentistry techniques represents a
systematic understanding of the advancement within this field.

• Performance analysis of the current approaches on existing benchmark datasets.
• Recommendations and future directions towards the standardization of artificial

intelligence in the field of dental medicine.

The materials and methods involved in the study selection process are provided in
Section 2. The imaging systems and challenges encountered in processing them for dental
diagnosis are briefly explained in Section 3. The public benchmark datasets available for
disease diagnosis along with the evaluation metrics are detailed in Section 4. An inclusive
account of the machine- and deep-learning approaches for disease diagnosis is provided
in Sections 5 and 6, respectively, while Section 7 focuses on identifying gaps in research
alongside future directions. Finally, Section 8 concludes the review.
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2. Materials and Methods
2.1. Protocol

To assess the reporting quality of systematic reviews, the review of the available
literature was conducted according to the Preferred Reporting Items for Systematic reviews
and Meta-Analysis (PRISMA) guidelines.

2.2. Electronic Search Strategy

A comprehensive electronic search for all relevant studies was performed in the
database from 2009 until the 30th of June 2022 in Google Scholar, PubMed/MEDLINE,
Institute of Electrical and Electronics Engineers (IEEE) Xplore, ScienceDirect, and Scopus.
The search shown in Table 1 was based on the PICO (problem, patient, population, indicator,
comparison, and outcome) elements. Each database was searched using adapted keywords
from the PICO elements. Additionally, a list of abbreviations is provided in Abbreviations
to facilitate reading and assimilation of the information presented in this study.

Table 1. Description of PICO elements.

Element Description

Research question What are the clinical applications and diagnostic performance of
artificial intelligence in dentistry?

Population Dental imagery related to X-ray images (bitewing, periapical, oc-
clusal, panoramic, cephalograms, cone-beam computed tomogra-
phy (CBCT)) near-infrared light transillumination (NILT) images,
fluorescence hyperspectral images, spatial frequency domain im-
ages.

Intervention AI-based models for diagnosis, detection, classification, and seg-
mentation.

Comparison Different algorithms to predict dental diseases.

Outcome Measurable and predictive outcomes that include accuracy, speci-
ficity, sensitivity, F1 score, intersection over union (IoU), dice coeffi-
cient, regression co-efficient receiver operating characteristic curve
(ROC), area under the curve (AUC), and successful detection rate
(SDR).

2.3. Eligibility Criteria
2.3.1. Inclusion Criteria

i. Timeline: manuscripts from the last fourteen years (2009–2022) focused on the applica-
tion of artificial neural networks, machine learning, and deep learning in dentistry.

ii. Language: manuscripts that are available in English were included irrespective of
country of origin.

iii. Data and Outcome: studies with proper mention of datasets used along with predictive
and measurable outcomes for quantification of the proposed model.

2.3.2. Exclusion Criteria

i. Type of Data Used: studies without clear information on data modalities.
ii. Methodology: studies without sufficient details of computer vision, machine-learning

and deep-learning methods, and techniques employed. Language: manuscripts that
are available in English were included irrespective of country of origin.

iii. Outcome: studies that did not report measurable outcomes.
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2.4. Study Selection and Items Collected

The title and abstract were screened after removing duplicate papers. The full text of
the studies was evaluated based on the eligibility criteria. Finally, the references added
to the article were reviewed manually. The full-text papers selected after the screening
process are shown in Figure 1.

Figure 1. Relevant data about studies included for synthesis.

The following data items were extracted: application, study (author and year), adopted
architecture, the task performed, dataset size and dataset split, augmentation, hyperpa-
rameters involved for model training, and performance metrics adopted for measuring the
performance of the proposed models.

3. Imaging Modalities for Dental Disease Diagnosis

Dental radiography (X-ray) is the most used imaging modality by dentists to identify
dental issues such as lesions [14–20], periapical pathosis [21], and dental restorations [22],
and evaluate oral health [23–27]. The examples of imaging modalities employed by re-
searchers for dental disease diagnosis are shown in Figure 2. Different imaging modalities
have been explored and their differences are outlined in the following subsections.

3.1. X-ray Imaging Systems

To reinstate traditional photographic X-ray films, digital X-ray imaging is employed. X-
ray images rely on sensors to produce enhanced images of oral structures [28]. In traditional
dental disease diagnosis, the images are evaluated by dentists to identify issues such as
tooth lesions and cavities, and devise treatments accordingly [29]. Dentists take several
types of dental X-rays to record different mouth views. For example, for the detection of
dental cavities, and to monitor mouth and teeth health, intraoral radiographs are used.
In addition, dentists use extraoral radiographs to detect impacted teeth, monitor the
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development and growth of jaws, and identify potential problems in jaws, facial bones,
and teeth.

Figure 2. Imaging modalities. (a–c) Examples of different intraoral imaging. (d–f) Extraoral imaging
modalities. (g–j) Near-infrared imaging. (a) Bitewing X-ray images. (b) Periapical X-rays. (c) Oc-
clusal X-ray. (d) Panoramic X-ray. (e) Lateral cephalograms. (f) CBCT X-ray. (g,h) Fluorescence
hyperspectral imaging. (i,j) Spatial frequency domain imaging.

3.1.1. Intraoral X-ray Imaging

Intraoral radiographs remain one of dentistry’s most widely used imaging modalities.
These radiographs provide high spatial resolution images that can be used to identify dental
and jawbone diseases [30]. Furthermore, these radiographs provide helpful information on
bone structure and density. Paralleling and bisecting angles are two techniques to obtain
an intraoral radiograph. The sensor is placed on the tooth in parallel planes, leveraging
the parallel technique, exposing the radiation. The latter technique involves placing the
receptor as close as possible to the tooth and exposing it to a central X-ray beam. The beam
is directed perpendicularly to the imaginary line. This line allows bisecting the angle
forming a long axis on the tooth and receptor plane [31]. The following are the types of
intraoral radiographs used widely by dentists for dental diagnosis and treatment planning.

• Bitewing X-ray provides a detailed account of maxillary and mandibular dental arches
in a certain region of supporting bone. Bitewing radiographs aid in detecting tooth
decay variations, finding dental decay, and identifying restorations.

• Periapical X-ray portrays teeth in a full-dimensional view of one of either dental arches.
The radiograph allows for detecting issues in a specific set of teeth and identifying
root structure abnormalities, and detecting the surrounding bone structure.

• Occlusal X-ray shows tooth positioning and their subsequent development in the
dental arches of either the maxilla or mandible.

3.1.2. Extraoral X-ray Imaging

Extraoral imaging focuses on detecting dental issues in the jaw and skull. These are
generally used to identify problems between the teeth, jaws, and temporomandibular joint.

• On a single radiograph, a panoramic X-ray gives a two-dimensional view of the oral
cavity including both the maxilla and mandible. These types of X-rays help identify
impacted teeth and diagnose dental tumors [32].
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• Lateral cephalogram enables clinicians in tooth examination about the individual
jaw profile. Cephalogram imaging shows the entire head’s entire side. This type of
imaging aids clinicians in developing treatment plans [33,34].

• Cone-beam computed tomography (CBCT) offers a substantial solution to the con-
ventional radiography demerits. CBCT imaging is used. This type of imaging shows
the interior body structures as (three-dimensional) 3-D images and enables identi-
fying fractures and tumors in face bones. This imaging aids surgeons in avoiding
after-surgery complications [35].

3.2. Near Infrared Imaging Systems

Near-infrared imaging is a nonionizing photo-optical method leveraged for caries
detection. This imaging employs long wave radiation against tooth sides [36]. It penetrates
objects deeper, thus acquiring good contrast between health and carious tissues [37,38]. This
type of imaging offers certain advantages over conventional detection methods, including
less radiation exposure. Furthermore, this method provides improved quality images using
DIAGNOCAM [36] that transmit light through the alveolar process, including:

• Fluorescence hyperspectral imaging system is a non-contact approach to dental tissue
diagnostics. It helps degenerate raw data in a sizeable amount making it suitable
for computer vision processing [39]. This imaging system combines spatial and
spectral information, enabling dentists to obtain a precise optical characterization of
dental issues, including dental plaque. The images are captured using a line scanning
camera with 400–1000 nm spectral direction with a 5 nm sampling interval and spatial
resolution of 22 µm. In addition, the hyperspectral imaging modality helps assess
dental caries severity [40].

• Spatial frequency domain imaging (SFDI) is a quantitative imaging technique [41] that
enables the separation of components that are scattered and the optical absorption of
a sample. This imaging modality relies on modulating project fringe patterns’ depth
at varying frequencies and phases.

3.3. Spectral Ranges

There are different spectral bands that have been explored in dental applications.

• Near-infrared, mid-infrared, and long-infrared: These spectral ranges provide valu-
able information about the chemical composition and molecular structure of den-
tal tissues; this helps in the detection and characterization of dental lesions. In-
frared is divided into three spectral regions, mainly near infrared ranging between
4000 and 14,000 cm−1, mid-infrared (MIR) ranging between 400 and 4000 cm−1, and far
infrared, ranging between 25 and 400 cm−1 [42].

• Ultraviolet (UV) range: The UV spectral range ranges between 100 and 400 nm
wavelength [43]. UV fluorescence techniques have been used to detect caries and also
to assess dental materials [44,45].

• Radio frequency (RF) range: Non-ionizing radio frequency pulse with a range of
frequencies is used in the presence of a controlled magnetic field for generating
MRI [46]. The MRIs generated have found applications in implant dentistry, providing
more precise information related to bone density, contour, and bone height [47].

3.4. Challenges in Automated Dental Disease Diagnosis

AI-based models have recently gained immense popularity for predicting, detecting,
and diagnosing dental diseases. However, specific issues include limited data availability,
accessibility, generality, lacking methodological standards, and practical issues revolv-
ing around the usefulness and standards in developing such solutions [11]. Therefore,
the prime research focus remains on developing efficient and accurate systems to overcome
these issues, and help dental practitioners plan treatment and prognosis. Disease classi-
fication has been researched extensively. However, certain challenges limit researchers



Diagnostics 2023, 13, 2196 7 of 30

from accomplishing similar levels of achievement in disease segmentation and treatment
planning. A few of the open challenges include:

• Limited Data Availability and Comprehensiveness: Due to data protection concerns,
medical, especially dental, data is not readily accessible. Moreover, certain challenges
including lack in terms of structure and relatively smaller size hinder applications of
artificial intelligence techniques [11]. Thus, data availability affects the extent to which
deep-learning-based approaches can be employed in this field.

• Data Annotation: Medical data annotation requires specialized knowledge from
healthcare professionals. Moreover, data labeling requires an adequate workforce
and the process is cost intensive. In the absence of progressive flow and accurately
annotated data, deep-learning algorithms cannot make correct interpretations and
accurate predictions [48].

• Limited Generalizability: Varying imaging characteristics lead to limited deep-learning
model generalizability [49]. The underlying possible generalizability deficits must be
elucidated to facilitate the development of improved modeling strategies.

• Class Imbalance: The predominant occurrence of standard samples as compared to
abnormal samples leads to class imbalance [50]. The imbalanced data lead to learning
bias in the majority class.

• External Validation: Lack of external validation leads to issues in the replication and
transparency of AI-based models within dentistry. The community standards for
model sharing, benchmarking, and reproducibility must be adhered to [51].

• Interpretability: Lack in terms of interpretability and transparency makes it challeng-
ing to predict failures. Interpretability must be ensured to build a proper rapport
between technology and humans, and generalize algorithms for specific tasks [8].

• Expertise Gap: The ability to make accurate diagnoses and treatment plans relies
on expertise derived from the extensive knowledge and practical experience. AI
may not be able to fully replicate the nuanced decision-making that experienced
clinicians possess. Bridging the gap between human expertise and AI capabilities
poses a significant challenge in automated dental disease diagnosis.

• Sensitivity and Specificity Limitations: Due to variations in image quality and anatomical
structures, AI models may have limitations in achieving high sensitivity and specificity.

• Image Interpretation Issues: The overlapping structures and presence of artifacts
make interpreting dental images a daunting task. AI models should overcome these
challenges to ensure accurate and reliable interpretation of dental images.

• Variations in Pathology Presentation: Dental diseases manifest in different ways.
These variations can be in terms of size, shape, or appearance. AI models are required
to be able to take into account these variations accurately to provide accurate detection
and classification of different pathologies.

4. Dataset and Evaluation Metrics
4.1. Benchmarks and Datasets

This section explores the datasets used for research in dental disease diagnosis.
The summary of characteristics of public benchmarks for dental disease diagnosis is shown
in Table 2.

4.1.1. ISBI2015 Grand Challenge Dental Dataset

i. Cephalogram Dataset [52] consisting of 400 cephalograms taken from 400 patients.
The images were acquired using CRANEX excel ceph machine and are saved in TIFF
format. Two experienced doctors evaluated and manually marked 19 landmarks on
the images to generate ground truth masks. The size of each image is 1935 × 2400.
The goal of this dataset is to enable researchers to make accurate landmark predictions
for practical cephalometric analysis.

ii. Bitewing Radiograph Dataset [53] comprising 120 bitewing radiographic images
collected from 120 patients. The dataset includes seven color-coded areas indicating
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caries using different colors [54,55]. Moreover, images are marked manually after being
reviewed by experienced medical doctors. The dataset aims to enable researchers to
investigate a suitable automated segmentation method for identifying seven different
areas of the tooth.

Table 2. Summary of characteristics of public datasets in dental disease diagnosis.

Dataset (Ref)
Dataset Specifications

Research Challenges
Size and Modality Disease Category Format Other Qualities

ISBI-2015 grand
challenged dental
dataset [53]

120 bitewing images
400 cephalograms

Dental caries (enamel,
dentin, pulp)
Landmark detection

JPEG TIFF High data variances Feature extraction
and classification,
caries detection and
landmark
identification

Panoramic dental
X-ray dataset [56]

2000 panoramic
radiographs

Intraosseous
mandible lesions

BMP of 2900 × 1250
pixels

A few low-quality
images (blurred or
malposed)

Mandible
segmentation
Identification of
anatomical structures

UFBA-UESC dental
image dataset [57]

1500 panoramic
radiographs

Restoration and
dental appliance

JPEG of 1991 × 1127
pixels

High data variability
and imbalance in
terms of number of
images and number
of pixels per class

Semantic
segmentation

Tufts multimodal
panoramic X-ray
dataset [58]

1000 panoramic
radiographs

Tooth abnormalities Images and ground
truth masks:
TIFF/JPEG of 840 ×
1615

Instance
segmentation and
numbering. Short
textual descriptions
of abnormalities
present in each
radiograph. Gaze
plots from
eye-tracking data

Image enhancement,
tooth segmentation,
and abnormality
detection

Oral and dental
spectral image
database (ODSI-db)
[59]

316 spectral images
with 215 annotation
masks

Occlusal surfaces of
lower and upper
teeth, face
surrounding the
mouth, and oral
mucosa

Multipage TIFF of
1392 × 1040 pixels

Highly imbalanced in
terms of number of
images and number
of pixels per class

Organ segmentation

4.1.2. Panoramic Dental X-ray Dataset [56]

This consists of 2000 panoramic X-ray images obtained from 116 patients. The images
are taken with Soredex Cranex D digital X-ray unit. The images cover medical conditions,
including healthy, partial, and completely edentulous teeth. Two subsets were generated
from the original dataset. In the dataset, the panoramic X-rays are sorted out based on
qualitative features, including the vertical distance between the alveolar process, ramus
width, the acuteness of the gonial angle, and the inferior mandible.

4.1.3. UFBA-UESC Dental Image Data Set [57]

The benchmark consists of 1500 panoramic radiographs distributed among ten cate-
gories. The categories indicate the presence or absence of dental restorations and appliances
from 32 teeth. The other two categories are reserved for implants and patients with more
than 32 teeth. The images have been obtained using the X-ray camera model ORTHOPHOS
XG 5/XG 5 DS/Ceph from Sirona Dental Systems. This dataset has been valuable to the
research community for semantic segmentation.

4.1.4. Tufts Multimodal Panoramic X-ray Dataset [58]

The benchmark comprises 1000 panoramic dental radiography images. The images
are labeled by experts to identify tooth abnormalities. The abnormalities are categorized
into periapical, odontogenic, pericoronal, inter-radicular, and none. The images are in a
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generic TIFF/JPEG format. The dataset contains radiographs, labeling masks, gray and
quantized maps generated using eye-tracking software, tooth masks with labels, along
with a maxillomandibular region-of-interest mask [60]. This dataset can aid in enhancing
tooth segmentation algorithms, and allow the incorporation of radiologists’ expertise into
creating robust and accurate diagnosis systems.

4.2. Evaluation Metrics

Different metrics are used to analyze the dental diagnosis algorithms’ performance.
This section provides an overview of the performance metrics and some shared concepts of
the initial measures. A summary of the commonly employed performance metrics by most
algorithms is given here. The initial measures used for the calculation of metrics include:

• True Positive (TP): both the ground truth and method prediction correspond to positive.
• True Negative (TN): both the ground truth and method prediction correspond to negative.
• False Positive (FP): the ground truth is negative, but method prediction corresponds

to positive.
• False Negative (FN): the ground truth is positive, but method prediction corresponds

to negative.

Accuracy shows the fraction of correct predictions. Precision is the fraction of correct
positive predictions on total samples. Specificity indicates the fraction of correct negative
predictions. Sensitivity or recall shows the true positive rate (TPR) and is the fraction of
correct positive samples over total positive samples. The false positive rate (FPR) is the
ratio between negative samples erroneously categorized as positive. The F1 score is the
harmonic average between precision and sensitivity. The following equations are used to
calculate these metrics

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Speci f icity =
TN

TN + FP
(3)

Sensitivity =
TF

TP + FN
(4)

FPr =
FP

FP + TN
(5)

F1 = 2× Precision× Recall
Precision + Recall

(6)

The ISBI2015 Cephalogram Dataset [53] defined successful detection rate, which
indicates the estimated point percentage within each precision range, calculated as shown
in Equation (7).

i : ||(~mi)− (~ai)|| < z
n

∗ 100(%) (7)

The receiver operating characteristic (ROC) curve is obtained by plotting TPR against
FPR at different thresholds. The area under the curve (AUC) is calculated using ROC,
which provides an aggregate performance measure across classification thresholds.

Popular metrics utilized for performance measurement of the employed segmentation
algorithm include dice coefficient, also known as the SøRensen dice similarity index,
capable of comparing pixel-wise agreement with the corresponding ground truth and
segmentation prediction provided by the model [61,62] calculated as shown in Equation (8)

(2 ∗ TP)
(2TP + FP + FN)

(8)
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Another metric is the intersection over union (IoU) also referred to as the Jaccard
Index. This particular metric allows measuring the similarity between the prediction and
the ground truth and is considered a more precise metric to show accuracy for object
segmentation [62].

5. Approaches to Dental Disease Diagnosis Using X-ray Imaging

In this section, various research works are discussed to diagnose dental diseases.
The overview of the process flow for diagnosing the dental disease is shown in Figure 3.
The summary of studies organized by AI application, techniques employed, and the
targeted problem is shown in Table 3.

Figure 3. Overview of dental disease diagnosis process flow.

Table 3. Studies organized by AI application, techniques, and problems targeted based on X-ray imagery.

Application Technique Target Problem and Study Number

Image enhancement Classical image analysis approaches Contrast adjustment [63–69], image sharpening [70]

Machine learning Visibility enhancement [71]

Deep learning -

Disease detection Machine learning Vertical root fracture [72,73]

Deep learning Periapical pathosis [21], dental tumors [74], tooth numbering [75–78], tooth detec-
tion and identification [79–81], periodontal bone loss [32,82,83]

Disease classification Classical image analysis approaches Tooth detection [84,85], osteoporosis assessment [86], dental caries [87]

Machine learning Dental caries [88], proximal dental caries [14], molar and pre-molar teeth [89], os-
teoporosis [90], dental caries [15], periapical lesions [16,17], dental restorations [22],
periapical roots [91], teeth with root [92], sagittal patterns [93]

Deep learning Tooth numbering [94–99], dental implant stages [100], implant fixture [101], bone
loss [18], periapical periodontitis [102–105], dental decay [106], approximal dental
caries [19]

Disease segmentation Classical image analysis approaches Feature extraction [107], tooth edge reinforcement [108], tooth decay [109,110],
dental cyst delineation [111]

Machine learning Bone loss and tooth decay detection [112,113], dental caries [85], assess maxillary
structure variation [114]

Deep learning Identification of molars and premolars [23–25], identification of degraded and
fragmented human remains [115], diagnosing early lesions [20], alveolar bone
level [26,27], tooth localization [116]

The presence of residual and topological features makes medical imagery analysis
troublesome. The following subsections discuss different artificial intelligence techniques
for image enhancement, disease detection, classification, and segmentation. The relevant
studies employing classical image analysis, and machine and deep learning for X-ray
imaging for dental disease diagnosis are shown in Figure 4.
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Figure 4. Summary of relevant studies based on classical image analysis, machine- and deep-learning
techniques for X-ray imaging.

5.1. Image Enhancement

Computer-aided image processing techniques can be employed to improve the con-
trast and intensity of radiographic images. Lin et al. enhanced X-ray images using a
combination of homomorphic filtering and adaptive contrast stretching based on adaptive
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morphological transformation [14,63]. Ahmed et al. enhanced X-ray image interpreta-
tion to improve the diagnostic capability through contrast-limited adaptive histogram
equalization (CLAHE). It was found that image enhancement techniques can detect abnor-
malities with higher efficiency [65]. An improved image enhancement technique based on
CLAHE-Rayleigh adopted by Suprijanto et al. provided optimal quality images compared
to histogram visualization [66]. Contrast stretching variables have been employed to im-
prove dental radiology image quality [67]. Gaussian filtering and histogram equalization
for enhancement of dental radiographs was adopted by Radhiyah and fellow authors [68].
Geetha et al. adopted the Laplacian filter for image sharpening [69]. For the characterization
of dental radiographs, Veena et al. adopted contrast adjustment and histogram equalization
using panoramic radiographs [70]. Few studies have employed machine learning for X-ray
image enhancement in the dental field. However, in one study, Yousefi et al. formulated an
image enhancement technique based on wavelet image fusion and a Bayesian classifier [71].

5.2. Disease Detection

Leveraging machine learning to diagnose vertical root fractures, a study evaluated
neural networks using intraoral digital radiographs and demonstrated their ability to make
accurate predictions regarding root fractures and surrounding bone [72]. However, it is
important to note that diagnosing root fractures is best performed using CBCT (cone-beam
computed tomography) images rather than screening images such as orthopantomographs
(OPTs) due to their limited reliability in this context. In line with this, Johari et al. presented
a study utilizing a probabilistic neural network (PNN) specifically designed to detect
vertical tooth fractures using CBCT images. They found that CBCT images provided more
effective diagnostic outcomes compared to periapical radiographs [73]. Therefore, when
applying AI algorithms for the diagnosis of root fractures, it is crucial to utilize CBCT
images for more accurate and reliable results.

Deep-learning algorithms have been employed significantly for detecting periapical
pathosis. Miki et al. investigated an automated method based on a deep convolutional
neural network (DCNN) for dental charting using CBCT images yielding an accuracy of
91.0% [21]. For the detection of dental tumors, a study evaluated CNN on ameloblas-
tomas and keratocystic tumors, achieving sensitivity, specificity, and accuracy of 81.8%,
83.3%, and 83%, respectively, based on panoramic X-ray images [74]. In another attempt,
Tuzzoff et al. investigated DCNN on panoramic radiographs for tooth numbering and
dental charting [75]. A faster RCNN-based method was proposed by Chen et al. for
detecting and numbering teeth in periapical radiographs achieving both accuracy and
recall of 90% [76]. Hirawa et al. evaluated a deep-learning-based system using panoramic
radiographs to assess the number of distal roots present in the mandibular. The system
was capable of detecting additional roots yielding encouraging performance [77]. In a
study by Orhan et al., a deep convolutional neural network (DCNN) was proposed using
CBCT images for tooth detection and numbering specific teeth. The system successfully
detected 142 out of 153 periapical lesions with recall, precision, and F1 score of 89%, 95%,
and 93%, respectively [78]. Deep learning has been used widely for tooth detection and
identification. Chung et al. proposed a point-wise localization and distance regulariza-
tion method for individual tooth detection. The model was able to localize existing and
missing teeth yielding a precision of 99.7% and recall of 97.2% [79]. For automatic tooth
region detection, Mima et al. investigated Faster R-CNN, using four cross-validations on
panoramic X-ray images. The model could classify 32 tooth types with an accuracy of
91.7% and a mean IoU of 0.748 [80]. Another study explored a single shot multibox detector
(SSD) network with a side branch; the model achieved a detection rate of 99.03% and a
classification rate of 96.79% on panoramic X-ray images [81]. For detecting periodontal
bone loss, Kim et al. proposed DeNTNet, a transfer learning-based deep convolutional
neural network on panoramic dental radiographs yields an F1 score of 75%, higher than
the average performance of dental clinicians [32]. For detecting and diagnosing dental
caries, Lee et al. evaluated deep CNN based on the GoogleNet Inceptionv3 framework and
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employed transfer learning to make accurate predictions. The model achieved accuracy
for pre-molar, molar, and combined tooth models of 89%, 88%, and 82%, respectively [82].
Later, for periodontal bone loss detection, Krois et al. designed a deep CNN network
trained on image segments using panoramic radiographs [83].

While deep-learning algorithms have shown promising results in detecting various
dental conditions, it is important to note that the diagnosis of certain dental tumors, such
as ameloblastomas or keratocysts, remains challenging even for expert clinicians. These
conditions typically require a biopsy for a definitive diagnosis. Therefore, it is crucial
to highlight that the automated systems mentioned in the previous studies can provide
valuable alerts or indications to clinicians, but they are not capable of making a definitive
diagnosis, particularly in the field of oral pathology.

5.3. Disease Classification

Multiple-fuzzy-attribute-based methods were adopted to analyze each tooth based
on area/perimeter and height/width ratio; the teeth were isolated using integral projec-
tion, and then features were extracted. The features were then used to classify the teeth
using multiple fuzzy attributes [84]. Banu et al., 2014 performed dental cyst classification
using texture parameter estimation based on the gray-level co-occurrence matrix (GLCM)
approach. The K-means classifier was employed for classification based on estimated
parameters [85]. For osteoporosis assessment using thorax X-ray images, feature extraction
was performed using GLCM followed by KNN [86]. Another early attempt evaluated
two machine-learning algorithms; support vector machine (SVM) and K nearest neighbors
(KNN) were used for dental caries classification based on features extracted using the
GLCM algorithm [87]. Using machine-learning techniques for diagnosing proximal dental
caries, Devito et al. utilized an artificial multilayer perceptron neural network reporting an
improvement of about 39.4% in dental caries detection with a ROC curve area of 0.884 [88].
For periapical pathosis using panoramic X-ray images, a tooth numbering and classification
system based on feature extraction using projected edge distribution and geometric proper-
ties is proposed in [89] to aid forensic odontologists in classifying premolar and molar teeth.
For osteoporosis detection, Bo et al. proposed a two-stage SVM model for classification [90].
Another recent attempt [15] for caries detection involved using a backpropagation network
with a linearly adaptive particle swarm optimization algorithm. Ekert et al. diagnosed peri-
apical lesions using panoramic radiographs, yielding a specificity of 87% and sensitivity of
65% [16]. Another study utilized cubic SVM to detect and classify dental restoration, achiev-
ing a sensitivity of 94% and classification sensitivity of 98% [22]. Jusman et al. evaluated
fine Gaussian SVM and KNN on X-ray images enhanced using the GLCM algorithm for
dental caries detection. It was found that fine Gaussian SVM achieves an accuracy of 95.7%
for five dental classes [87]. Using periapical radiographic images, Wu et al. developed
a program based on image patch histogram classification. The algorithm’s performance
was evaluated with different histogram similarity measures on periapical root data [91].
A recent study explored R-CNN combined with expert knowledge for classifying teeth with
and without root canal filling using 1000 periapical X-ray images. The model achieved an
overall accuracy of 95.6%, sensitivity of 89.5%, and specificity of 97.9% [92]. Several studies
employed CBCT images. Okada et al. evaluated the Adaboost algorithm in combination
with linear discriminant analysis (LDA). The model yielded an accuracy of 94.1% and can
be used to identify periapical lesions [17]. Using cephalograms, a non-parametric method
for identifying sagittal patterns was proposed by Nino-Sandoval et al. [93].

Various studies have evaluated the performance of deep-learning-based networks for
diagnosing and classifying lymph node metastases, dental implants, bone loss, periapical
periodontitis, and caries. For tooth numbering, Yasa et al. proposed a faster region-based
convolutional neural network (R-CNN) for tooth identification and numbering using
109 bitewing X-ray images. The model yielded an F1 score, precision, and sensitivity
of 95.15%, 92.93%, and 97.48%, respectively, and correctly numbered 697 teeth from the
test dataset [94]. A faster RCNN was employed by Bilgir et al. using 249 panoramic
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X-ray images. The model achieved precision, sensitivity, and F1 score of 96.52%, 95.59%,
and 96.06% [95]. Kılıc et al. presented a faster R-CNN Inceptionv2 model for detecting
and numbering deciduous teeth using 421 panoramic X-ray images. The model yielded
a sensitivity of 98.04%, a precision of 98.04%, and an F1 score of 96.86% [96]. Another
recent study, Görürgöz et al., explored faster RCNN on pre-trained GoogleNet Inceptionv3
CNN for automated tooth numbering and jaw classification and correctly numbered 668
teeth from 156 periapical radiographs with F1 score, precision, and sensitivity of 87.20%,
78.12%, and 98.67%, respectively [97]. Sukegawa et al. evaluated five models to classify
dental implants using panoramic X-ray images; among the five models, fine-tuned VGG-16
exhibited the highest implant classification performance [98]. Lee et al. evaluated the deep
fine-tuned CNN algorithm GoogleNetInceptionv3 to identify and classify dental implant
systems using panoramic and periapical radiographs, achieving an area under the receiver
operating characteristic curve of 0.971 [99]. Another recent study incorporated multi-task
deep learning to investigate dental treatment stages and categorize dental implants using
panoramic images. Compared to five DCNNs (ResNet-18,34,50,101 and 152), the proposed
model achieved high classification validity with an area under the curve of 0.999 [100].
For implant fixture classification, a pre-trained You Only Look Once (YOLOv3) pre-trained
using transfer learning was evaluated using periapical radiographs, achieving an accuracy
of 96.4% [101]. Calculating the amount of radiographic bone loss is time-consuming and
labor-intensive. To automate this process, different deep-learning methods have been
employed. For example, one study evaluated a deep machine-learning algorithm for
alveolar bone loss detection yielding an accuracy of 87%, and sensitivity and specificity of
86% and 88%, respectively, using periapical X-ray images obtained from 236 patients [18].
In recent years, deep learning has been used sparsely in classifying common chronic
diseases such as periapical periodontitis and caries. Li et al. proposed pre-trained AlexNet
which transfers learning using periapical X-ray images for apical lesions. They achieved an
accuracy of 91.67% in classifying healthy and unhealthy classes [102]. Chen et al. proposed
a fast RCNN to detect dental decay, periapical periodontitis, and periodontitis using
periapical radiographs. Lesions were detected with a precision of 50% and recall of 60%
for disease [106]. A study by Mao et al. proposed a caries and lesion area analysis model
for identifying caries and restorations using bitewing images. Compared to four CNNs
(AlexNet, GoogleNet, VGG19, and ResNet50) the model achieved an accuracy of 95.5% for
restoration and 90.3% for caries [103]. For apical lesion detection, a study investigated a
modified deep-learning model evaluated on 4129 periapical X-ray images yielding an F1
score of 82.9% for dental caries and 82.8% for periapical periodontitis [104]. For approximal
caries detection, Moran et al. evaluated the inception CNN-based model using 112 bitewing
X-ray images to classify caries based on lesion severity achieving an accuracy of 73.3% [105].
Bayraktar and Ayan trained a real-time object localization and classification YOLO-based
CNN model to detect approximal dental caries using 800 bitewing images, achieving
accuracy above 90% [19].

5.4. Disease Segmentation

Based on classical image analysis approaches, Rad et al. employed the level set
method and texture feature segmentation for the segmentation of enhanced images [107].
Decimation-free directional filter bank (DDFBT) and multistage adaptive thresholding were
used in [108] to segment teeth based on three main steps. In the first step, the vertical and
horizontal directional images are formed. The second step involves noise removal and
image enhancement for tooth edge reinforcement. Finally, the tooth is segmented using
multistage adaptive thresholding (MAT). Although, for the identification of tooth decay,
the Otsu method was employed for automatically setting threshold values without hu-
man intervention, it was found that images with image enhancement demonstrated larger
threshold values and can be utilized by researchers for discriminant analysis [109]. To im-
prove disease pattern recognition, Ali et al. proposed a fuzzy clustering algorithm based
on neutrosophic orthogonal matrices for segmentation. Experiments on real datasets af-
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firmed that the fuzzy clustering algorithm outperforms Otsu in practical applications [110].
For fully automatic hybrid multi-lesion classification, thresholding was performed based
on fuzzy membership function for pixels and local information of neighboring pixels for
enhanced segmentation for dental cyst delineation [111].

Using machine learning, Li et al. investigated the strengths of machine learning
and variational level set methods for fast clinical segmentation. The approach is divided
into learning and segmentation using SVM and principal component analysis on both
2D and 3D CT scans and X-ray images [112]. For bone loss and tooth decay detection,
Lin et al. evaluated SVM to characterize normal and abnormal regions using variational
level set function on periapical radiographs [113]. For diagnosing dental caries using dental
radiographs, adaptive threshold and morphological operations followed by SVM have
been employed. It was found that the proposed method provides reliable decision support
with an accuracy of 96.88%, a sensitivity of 100%, a specificity of 86.6%, and a precision of
96.08% [69]. In addition, a method based on a multisource integration framework to assess
maxillary structure variation using CBCT images was employed, yielding a dice ratio of
0.80 [114].

Using deep learning, a mask region-based deep CNN for automated tooth segmenta-
tion using panoramic radiographic images was proposed by Lee et al. The model detected
localized tooth structures with an F1 score of 87.5% and a mean IoU of 0.877 [23]. Another
study by Leite et al. explored two deep-learning models for identifying molars and pre-
molars. The model achieved a sensitivity of 98.9% and a precision of 99.6% [24]. Finally,
Cantu et al. evaluated a U-Net-based segmentation network using 3686 bitewing X-ray
images yielding an overall accuracy of 80% [25]. Teeth are frequently used for the identifica-
tion of degraded and fragmented human remains in the event of natural disasters. A study
by Bozkurt et al. employed a meta-heuristic optimization-based model for identifying teeth
and jaw using 20 panoramic X-ray images. The model achieved an average accuracy of
90.73% for separating the mandibular jaw and maxillary jaw teeth [115]. For diagnosing
early lesions, Nishitani et al. proposed U-Net with loss function weighted on tooth edge
using 162 panoramic images exhibiting dice index of 0.927 higher compared to U-Net
with conventional loss function [20]. In addition, a pre-trained Cifar10Net CNN network
was proposed by Lin et al. for the classification and segmentation of proximal caries at
different severity levels on periapical X-ray images. The model achieved an area under
the curve of 0.805 for image extraction, 0.860 for edge extraction, and 0.549 for image
segmentation [14]. To measure radiographic alveolar bone level and assess stages using
periapical X-ray images, Chang et al. proposed a deep hybrid method for the detection
and classification of periodontal loss of individual teeth, using modified Mask-RCNN
based on feature pyramid network (FPN) and ResNet101 as a backbone for preprocessing
panoramic X-ray images [26]. In a recent attempt, Jiang et al. employed a two-stage deep-
learning architecture based on UNet and YOLO-v4 for tooth localization using panoramic
X-rays [116]. The model achieved a classification accuracy of 77% and provided more
accurate predictions than dental practitioners. Another study by Lee et al. explored U-Net
with ResNet-34. The model achieved an accuracy of 85% for bone area segmentation and
tooth segmentation [27].

5.5. Benchmarking of X-ray Based Dental Disease Diagnosis Approaches

Most of the approaches proposed for dental disease diagnosis have been evaluated
on private datasets, making comparative analysis unfeasible. This section provides a
comprehensive comparison of different approaches to public benchmarks in terms of
experimental protocols adopted by the studies shown in Tables 4–6 and performance
metrics in Tables 7–9.
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Table 4. Comparative analysis of experimental protocols employed by dental disease diagnosis approaches on ISBI-2014–2015 grand challenge dental dataset.

Author, Year (Ref) Architecture Task
Dataset Size and Split

Data Augmentation
Hyperparameters

Train Set Valid Set Test Set Loss Function Optimizer Learning Rate

Zeng et al., 2021 [117] Three stage cascaded CNN Landmark detection 150 150 100 Affine transformation - Adam 0.001

Song et al., 2020 [118] CNN with pre-trained ResNet50 Landmark detection 150 150 100 Affine transformation - Adam 0.001

Lee et al., 2020 [119] Bayesian CNN (BCNN) Landmark detection 150 250 - Affine transformation Softmax cross entropy Adam 0.001

Qian et al., 2019 [120] Faster R-CNN Landmark detection 150 150 100 - Custom loss function Stochastic gradient
descent (SGD) 0.001

Lindner et al. [121] Random Forest, regression, voting Landmark detection 150 250 - - - - -

Ibragimov et al., 2014 [122]
Shape and appearance based
landmark refinement with game
theory

Landmark detection 150 150 100 - - - -

Chu et al., 2014 [123] Random forest, regression Landmark detection 150 150 100 - - - -

Table 5. Comparative analysis of experimental protocols employed by dental disease diagnosis approaches on Tufts multimodal panoramic X-ray.

Author, Year (Ref) Architecture Task
Dataset Size and Split

Data Augmentation
Hyperparameters

Train Set Test Set Loss Function Optimizer Learning Rate

Pannetta et al., 2022 [60] UNet with three backbones Tooth segmentation 85– 150 - Cross entropy Adam 0.0001
Nashold et al., 2022 [124] Multi-objective model Abnormality detection and localization 900 100 Affine transformation Binary cross entropy Adam 0.0001
Karacan et al., 2022 [62] Tooth segmentation - - - - - - -

Table 6. Comparative analysis of experimental protocols employed by dental disease diagnosis approaches on UFBAUESC dental image data set.

Author, Year (Ref) Architecture Task
Dataset Size and Split

Data Augmentation
Hyperparameters

Train Set Valid Set Test Set Loss Function Optimizer Learning Rate

Yamanakkana et al., 2022 [125] Two feature aggregation module Tooth segmentation 1200 150 150 Affine transformation - - -

Chen et al., 2021 [126] Multiscale structural similarity Tooth segmentation root
boundary extraction

1200 150 150 - Custom hybrid loss Adam 0.0001

Zhao et al., 2020 [127] Two stage attention segmentation net-
work

Tooth segmentation 1200 150 150 - Custom hybrid loss Adam 0.001

Kosh et al., 2019 [128] Ensemble U-Net Tooth segmentation 1200 - 300 Affine transformation Cross entropy Adam 0.0001

Silva et al., 2018 [57] Mask R-CNN Tooth segmentation 753 452 295 - - - -
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Table 7. Comparative analysis of performance metrics of dental disease diagnosis approaches using ISBI cephalometric dataset.

Author, Year (Ref)

Performance Evaluation Metrics

Successful Detection Rate (%)

2 mm 2.5 mm 3 mm 4 mm

Testset1 Testset2 Testset1 Testset2 Testset1 Testset2 Testset1 Testset2

Zeng et al., 2021 [117] 81.3 70.5 89.9 79.5 93.7 86.5 97.8 93.3
Song et al., 2020 [118] 86.4 74.0 91.7 81.3 94.8 87.5 97.8 94.3
Lee et al., 2020 [119] 82.1 82.1 88.6 88.6 92.2 92.2 95.9 95.9
Qian et al., 2019 [120] 82.5 72.4 86.2 76.1 89.3 79.6 90.6 85.9
Lindner et al., 2016 [121] 73.6 66.1 80.2 72.0 85.1 77.6 91.4 87.4
Ibragimov et al., 2014 [122] 71.7 62.7 77.4 70.4 81.9 76.5 88.0 85.1
Chu et al., [123] 39.7 44.1 51.7 57.0 62.1 68.0 77.7 83.8

Table 8. Comparative analysis of performance metrics of dental disease diagnosis approaches using Tufts multimodal panoramic X-ray dataset.

Author, Year (Ref) Task
Performance Evaluation Metrics

Accuracy (%) IoU (%) Dice Co-Efficient (%) F1 Score Recall

Pannetta et al., 2022 [60] Tooth segmentation (5 categories) 95.01 86.1 91.6 - -
Nashold et al., 2022 [124] Abnormality detection and localization (5 categories) 94.9 91.2 - 70.5 -
Karacan et al., 2022 [62] Tooth segmentation (teeth and maxillomandibular) - 91.8 95.7 - -

Table 9. Comparative analysis of performance metrics of dental disease diagnosis approaches using UFBA-UESC dental image dataset.

Author, Year (Ref) Task
Performance Evaluation Metrics

Accuracy (%) Specificity (%) Precision (%) F1 Score (%) Recall (%) Dice Score (%)

Yamanakkanavar et al., 2022 [125] Tooth segmentation (10 categories) 97.0 - - - - -
Chen et al., 2021 [126] Tooth segmentation and root boundary extraction 97.3 98.45 93.35 - 92.97 93.01
Zhao et al., 2020 [127] Tooth segmentation (10 categories) 96.94 97.81 94.97 - 93.77 92.7
Koch et al., 2019 [128] Tooth segmentation (10 categories) 97.2 98.3 92.9 - - 93.6
Silva et al., 2018 [57] Tooth segmentation (10 categories) 92.08 96.12 83.73 76.19 79.44 -
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6. Approaches to Dental Disease Diagnosis Using Near Infrared Imaging Systems

NILT imaging is an efficient tool for early, occlusal, proximal, and secondary caries
detection and tooth restoration using noninvasive high contrast imaging [36–38]. Moreover,
NIR spectral features enable reliable identification of dental caries and stages of dental
diseases. Few studies have employed NIR imaging to detect dental diseases, as discussed
below in detail. To the best of our knowledge, few studies have explored the use of near-
infrared imaging for dental disease diagnosis. These studies are mainly based on deep
learning for image enhancement, dental disease detection, classification, and segmentation.
Figure 5 summarizes the relevant studies based on different computer vision, machine,
and deep-learning techniques for dental disease diagnosis using near-infrared imaging.
The relevant studies organized by AI application, targeted problem, and imaging type
based on near-infrared imaging are shown in Table 10.

Figure 5. Summary of relevant studies based on classical image analysis, machine- and deep-learning
techniques for near-infrared imaging.

Table 10. Studies organized by AI application, techniques, and problems targeted based on near-
infrared imagery.

Application Target Problem and Study Number Image Type

Image enhancement Contrast enhancement Spectral reflectance imaging
Disease detection Dental caries Near-infrared imaging
Disease classification Early caries Near-infrared hyperspectral imaging
Disease segmentation Proximal and occlusal lesion Near-infrared transillumination imaging

6.1. Image Enhancement

On spectral reflectance imaging, a multi-spectral imaging technique using various
light sources for visualization of oral tissues has been proposed by Wang et al. It was found
that spectral analysis increased the efficiency of diagnosis of oral cancer and treatment
planning [129]. Another method was proposed by Fält et al. based on particle swarm
optimization (PSO). The method improved the contrast between the lesion and non-lesion
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areas for efficient dental disease diagnosis [130]. As a starting point for spectral image
enhancement on a publicly available dataset [59] for dental disease diagnosis, Hyttinen et al.
demonstrated contrast enhancement of spectral images using partially negative computa-
tional filters derived from principal component analysis (PCA). The study highlighted the
use of spectral imaging in treatment planning and preventive care [131].

6.2. Disease Detection

Recent studies explored the clinical performances of NIR-based systems for detecting
dental caries compared to bitewing radiographs. It was found that near-infrared imaging
provides comparable performance for the detection of dental caries compared to bitewing
radiographs [132–134].

6.3. Disease Classification

Zakian et al. employed three spectral bands and a classification model with several
user-defined parameters determined empirically. The proposed model lacked in providing
consistent and repeatable results [135]. A user parameter-free classification approach
was proposed by Usenik et al. involving NIR hyperspectral imaging for early caries
detection and classification of healthy and diseased dental tissues. The proposed system
was evaluated on 12 extracted human teeth and achieved a sensitivity of 83% and specificity
of 99% [136].

To test the generalizability of CNNs on NILT imagery, Holtkamp et al. trained the
ResNet classification model on both Vivo and Vitro datasets. The model trained on Vivo
and tested on Vitro achieved an accuracy of 70% with an area under the curve of 0.66,
and the same model trained on Vitro and tested on Vivo achieved an accuracy of 61% and
AUC of 0.60 [137].

6.4. Disease Segmentation

Casalegno et al. trained deep CNN on 217 NILT images of occlusal and proximal
surfaces. The model achieved an AUC of 85.6% and an overall IoU score of 72.7% for
proximal and 83.6% for occlusal lesions [138]. Another study by Schwendicke et al. ex-
plored two deep CNNs based on ResNet18 and Resnext50 pre-trained using the ImageNet
dataset. In Vivo, 1319 segmented teeth are included, whereas, in Vitro, 226 posterior per-
manent human teeth are considered. It was found that ResNext50 performed better with
regards to performance; the model yielded an AUC of 74% on NILT images of single tooth
segments [139].

6.5. Benchmarking of Near Infrared Based Dental Disease Diagnosis

Comparative analysis of the methods discussed above is impossible as most of the
approaches proposed for near-infrared-based dental diagnosis have been evaluated on
private datasets. Hence, in this section, only two studies were retrieved to compare
approaches evaluated on the public dataset ODSI-DB [59] in terms of experimental protocols
and performance metrics as shown in Table 11.

Table 11. Comparative analysis of experimental protocols and performance metrics employed by
dental disease diagnosis approaches on ODSI-db.

Ref, Year Architecture Task
Dataset Size

Pre-Processing
Hyperparameters Metric

Train Set Test Set Loss Optimizer Epochs Accuracy

[140], 2021 CenterNet
ResNet

Classification
and localization
(17 categories)

19,215 hy-
perspectral
images

2135 Re-labeled
masks using
custom algo-
rithm

- Adam 10,000 62.81%

[131], 2021 Principal com-
ponent analysis
(PCA)

Image enhance-
ment

Spectral im-
ages per
class

- Contrast stretch-
ing

- - - -
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6.6. Assessment of Risk Bias

A comprehensive assessment of bias was performed in this study. Tables 12 and 13
provide a risk assessment summary for each study, indicating the level of bias based on
predefined criteria for both X-ray-based and NILT-based imagery.

Table 12. Studies organized by AI application, techniques, and problems targeted based on X-ray-
based imagery.

Application Technique Target problem and study number

Image enhancement Classical image analysis approaches Contrast adjustment [63–69] (low), image sharpening [70] (low)

Machine learning Visibility enhancement [71] (moderate)

Disease detection Machine learning Vertical root fracture [72,73] (low)

Deep learning Periapical pathosis [21] (moderate), dental tumors [74] (high), tooth number-
ing [75–78] (low), tooth detection and identification [79–81] (moderate), periodontal
bone loss [32,82,83] (moderate)

Disease classification Classical image analysis approaches Tooth detection [84,85] (low), osteoporosis assessment [86] (low), dental caries [87]
(low)

Machine learning Dental caries [88] (low), proximal dental caries [14] (moderate), molar and pre-
molar teeth [73] (low), dental implants [98] (low), dental periapical lesions [17]
(moderate)

Table 13. Studies organized by AI application, targeted problem, and imaging type based on near-
infrared imaging.

Application Technique Target problem and study number

Image enhancement Classical image analysis approaches Contrast enhancement (low) [129–131]

Machine learning Spectral image enhancement for dental disease diagnosis (low) [131]

Disease detection Machine learning Dental caries detection using NIR imaging (low) [132–134]

Disease classification Classical image analysis approaches Dental tissue classification using NIR hyperspectral imaging (low) [135,136]

Deep learning Dental caries classification using CNNs (moderate) [137]

Disease segmentation Deep learning Lesion segmentation using deep CNN (moderate) [138,139]

7. Ethical Considerations and Future Research Directions

Artificial intelligence provides remarkable opportunities for researchers and dental
clinicians to diagnose dental diseases. Moreover, this technology offers immense opportu-
nities to advance diagnostics in dentistry. However, due to the lack of publicly available
datasets, its adoption has become a difficult challenge. Similarly, using machine and deep
learning has not been fully integrated into routine dentistry; data sharing and privacy issues
need to be dealt with through federated guidelines. The following subsections highlight
the ethical considerations and research gaps, and provide future research directions.

7.1. Ethical Considerations

The application of artificial intelligence in dentistry has enormous potential to improve
healthcare; however, there are certain ethical issues [141] that need to be addressed to
achieve the full potential of AI in dental healthcare. The accessibility and comprehensibility
of data are essential aspects of transparency. AI predictions rely heavily on the accuracy of
dataset annotations. Poorly labeled data can lead to inaccurate results and limit the efficacy
of AI-based dental diagnosis systems [126,142]. Moreover, another ethical aspect indicates
using patient data and medical test records to make predictions. The prediction models’
lack of transparency and interpretability remain a limitation due to privacy issues [143].
Other limitations include a lack of systematic conditions such as risk factors [144] and the
need for a third party to evaluate treatment outcomes [54].
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7.2. Research Gaps and Future Research Directions

Artificial intelligence in dentistry is generally not intended to replace dental clinicians.
Instead, it helps obtain second-informed opinions based on prediction and mathematical
decisions. Although existing approaches are powerful and can be employed for effective
and accurate dental disease diagnosis, the research in this domain is still sparse. Certain
future directions can pave the way for AI to be used for disease diagnosis and prognosis.

7.2.1. Data Insufficiency

Machine- and deep-learning algorithms require enough data. Imbalances and small
datasets remain a barrier to training the models. Very few current studies have ad-
dressed the data imbalance problem and utilize small datasets. These studies have
applied traditional data augmentation techniques on data to acquire improved perfor-
mance [117–119,124,125]. These techniques lead to data bias and suboptimal performance
of trained models. To overcome these issues and deal with insufficient data, few-shot
learning [145] can be adopted. Few-shot learning has gained the attention of researchers
in medical fields and a few studies have proposed small sample object detection methods
based on meta-learning and transfer learning [146].

7.2.2. Class Imbalance Learning

Few studies address the class imbalance problems [131,140] and they are often eval-
uated on privately available small datasets. Handling imbalanced class distribution is
essential to acquiring improved prediction performance. Unreliability in prediction per-
formance occurs due to the capability of the model to learn from the majority class and
insensitivity towards the minority class [147]. Hence, different techniques could be applied
to balance data, including using a synthetic oversampling technique (SMOTE) [148] that
generates data samples by leveraging samples of feature space of the target class combined
with features of nearest neighbors. Additionally, generative adversarial networks (GANs)
can be applied as they provide additional benefits compared to traditional augmentation
techniques. GANs have been used by researchers in the medical field to generate realistic
medical images for data augmentation. Moreover, GANs can also be employed to denoise
and enhance dental images and generate high-resolution synthetic images for improved
detection, classification, and segmentation for more accurate dental diagnosis [149].

7.2.3. Personalized Dental Medicine

Personalized medicine aims to individualize dental care based on the patient’s clinical
profile. The linkage of patients’ data gathered from different sources aids in diagnos-
ing dental diseases and developing novel strategies [150]. A personalized approach to
managing oral diseases is progressing, including managing chronic orofacial pain and
integrating personalized medicine into dental practice. Researchers devised different
imaging systems, including radiographic and near-infrared, to distinguish between dif-
ferent dental diseases. To provide effective oral healthcare, certain improvements are
needed in validating its routine. Moreover, certain scientific and technological gaps are to
be considered, including linkages between clinical outcomes, genotypes, and individual
biomarkers, cost-effectiveness, and improved drug design and delivery using artificial
intelligence [151]. There is a need for further research in this particular field to develop
tools for patient-specific precision healthcare.

7.2.4. Tele-Dentistry

Tele-dentistry has widened the scope of oral healthcare at reasonable costs and helps
dentists triage patients needing urgent dental care [152]. It further enables dentists to
acquire patients’ medical health records and radiographic images from an online record
management system, analyze the data, and provide consultation remotely. Tele-dentistry
has several applications, such as telediagnosis, which involves using images to diagnose
dental disease remotely, telemonitoring for monitoring dental health, and teleconsultation
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to provide expert opinion remotely to patients and ward off unnecessary travel for patients
facing geographic differences. A certain research gap remains regarding the use of AI
in teledentistry. Few studies have explored AI for remote dental diagnosis and moni-
toring. Studies have been conducted regarding teledentistry in pediatric dentistry [153].
Moreover, teledentistry can prove to be helpful for the differential diagnosis of common
lesions [154,155].

7.2.5. Internet of Dental Things (IoDT)

Medicine and dentistry are evolving, and different digital technologies are efflorescing
for diagnosing dental diseases and treatment planning. One of the recent smart technology
trends is IoDT based on the Internet of Things (IoT) which comprises a network of connected
physical gadgets. These devices can be controlled from across the globe using the internet.
At present, not many pieces of evidence about IoDT are available. Hence, new research
related to IoDT would significantly improve diagnosis and prevent dental diseases. A study
by Salagare et al. involved IoDT technology for preventive oral care [156]. In another
study, Liu et al. developed a smart dental IoT-based system to provide in-home dental
healthcare. The authors leveraged IoT to gather clinical images of patients from ten clinics
and applied R-CNN to detect and classify seven dental conditions [157]. To efficiently
evaluate patients’ oral health using IoT, Vellappally et al. proposed an IoT based xeno-
genetic spiking neural network. The proposed model accurately identified tooth structure,
gaps, premolars, and molars, and was helpful in effectively extracting oral features for
detecting dental caries, plaque, and periodontal diseases [158]. Sannino et al. investigated
IoT-based integrated wireless sensing technology to detect micro displacement to prevent
implant failure [159]. IoDT is continuously increasing in dentistry to achieve evidence-
based outcomes and improve treatment quality. Further research in this direction can
provide more opportunities to provide enhanced dental care.

Additionally, future research is needed in order to combine AI technology not only
with diagnostic devices but also with other recently introduced therapeutic features, such
as low noise instruments [160] and computerized anesthesia devices (Local anesthesia with
SleeperOne S4 computerized device vs traditional syringe and perceived pain in pediatric
patients: a randomized clinical trial [161]).

8. Conclusions

The progressive development of AI in dentistry has the potential to benefit clinicians
and researchers in improving dental care. Current computer vision techniques, machine
learning, and deep learning have demonstrated remarkable performance in disease di-
agnosis and treatment planning, surpassing state-of-the-art approaches. However, it is
important to acknowledge that, despite these advancements, AI cannot substitute the
invaluable role of human knowledge and experience. The limitations and challenges dis-
cussed in this article emphasize the need for human expertise in overcoming complex
diagnostic scenarios and making informed treatment decisions. While AI can assist and
augment the capabilities of clinicians, it cannot fully replicate the nuanced decision-making
process that experienced professionals possess. Therefore, the integration of AI in dentistry
should be seen as a complementary tool that enhances clinical practice rather than replacing
human experts.

Furthermore, ethical considerations, such as data accessibility, transparency, and pri-
vacy, must be carefully addressed to ensure patient trust and protect sensitive information.
Standardized protocols and federated guidelines for data sharing and privacy protection
are essential in this regard. Keeping in view these ethical considerations, future research
directions should focus on addressing data insufficiency and class imbalance issues in AI
algorithms. Innovative approaches such as few-shot learning and class imbalance learning
can help mitigate these challenges and improve prediction performance. Additionally, per-
sonalized dental medicine and tele-dentistry present exciting opportunities for leveraging
AI technologies to provide individualized care.
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The present study has certain limitations that should be acknowledged. Firstly, the in-
clusion criteria of the survey focused on studies that employed artificial neural networks,
machine learning, and deep-learning techniques in dentistry. Other approaches and tech-
niques that may have been used for disease diagnosis, such as traditional diagnostic meth-
ods or emerging technologies, have not been explored in this study. Therefore, the findings
may not provide a comprehensive overview of all diagnostic approaches utilized in den-
tistry. Secondly, the inclusion criteria of the study focused on techniques for dental disease
diagnosis based on X-ray imaging and near-infrared imaging techniques. While these
modalities are commonly used in dentistry, they represent only a subset of the available
diagnostic approaches. The exclusion of other imaging modalities, clinical examination
findings, histopathology, or genetic markers may limit the generalizability of the findings
and may not reflect the broader landscape of diagnostic approaches in dentistry.
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Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac.
Radiol. 2021, 50, 20200172. [CrossRef] [PubMed]

97. Görürgöz, C.; Orhan, K.; Bayrakdar, I.S.; Çelik, Ö.; Bilgir, E.; Odabaş, A.; Aslan, A.F.; Jagtap, R. Performance of a convolutional
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112. Li, S.; Fevens, T.; Krzyżak, A.; Li, S. Automatic clinical image segmentation using pathological modeling, PCA and SVM. Eng.
Appl. Artif. Intell. 2006, 19, 403–410. [CrossRef]

113. Lin, P.L.; Huang, P.Y.; Huang, P.W. An automatic lesion detection method for dental x-ray images by segmentation using
variational level set. In Proceedings of the 2012 International Conference on Machine Learning and Cybernetics, Xi’an, China,
15–17 July 2012. [CrossRef]

114. Amasya, H.; Yildirim, D.; Aydogan, T.; Kemaloglu, N.; Orhan, K. Cervical vertebral maturation assessment on lateral cephalomet-
ric radiographs using artificial intelligence: Comparison of machine learning classifier models. Dentomaxillofac. Radiol. 2020,
49, 20190441. [CrossRef]

115. Bozkurt, M.H.; Karagol, S. Jaw and Teeth Segmentation on the Panoramic X-Ray Images for Dental Human Identification. J.
Digit. Imaging 2020, 33, 1410–1427. [CrossRef]

116. Jiang, L.; Chen, D.; Cao, Z.; Wu, F.; Zhu, H.; Zhu, F. A two-stage deep learning architecture for radiographic staging of periodontal
bone loss. BMC Oral Health 2022, 22, 106. [CrossRef]

117. Zeng, M.; Yan, Z.; Liu, S.; Zhou, Y.; Qiu, L. Cascaded convolutional networks for automatic cephalometric landmark detection.
Med Image Anal. 2021, 68, 101904. [CrossRef] [PubMed]

118. Song, Y.; Qiao, X.; Iwamoto, Y.; wei Chen, Y. Automatic Cephalometric Landmark Detection on X-ray Images Using a Deep-
Learning Method. Appl. Sci. 2020, 10, 2547. [CrossRef]

119. Lee, J.H.; Yu, H.J.; Kim, M.j.; Kim, J.W.; Choi, J. Automated cephalometric landmark detection with confidence regions using
Bayesian convolutional neural networks. BMC Oral Health 2020, 20, 1–10. [CrossRef]

120. Qian, J.; Cheng, M.; Tao, Y.; Lin, J.; Lin, H. CephaNet: An Improved Faster R-CNN for Cephalometric Landmark Detection. In
Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019.
[CrossRef]

121. Lindner, C.; Wang, C.W.; Huang, C.T.; Li, C.H.; Chang, S.W.; Cootes, T.F. Fully Automatic System for Accurate Localisation and
Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci. Rep. 2016, 6, 33581. [CrossRef] [PubMed]

122. Ibragimov, B.; Likar, B.; Pernus, F.; Vrtovec, T. Computerized Cephalometry by Game Theory with Shape-and Appearance-Based
Landmark Refinement. In Proceedings of the International Symposium on Biomedical Imaging (ISBI), Bridge, NY, USA, 16–19
April 2015.

123. Chu, C.; Chen, C.; Wang, C.W.; Huang, C.T.; Li, C.H.; Nolte, L.P.; Zheng, G. Fully Automatic Cephalometric X-ray Landmark
Detection Using Random Forest Regression and Sparse Shape Composition. In Proceedings of the International Symposium on
Biomedical Imaging (ISBI), Beijing, China, 29 April—2 May 2014.

124. Nashold, L.; Pandya, P.; Lin, T. Multi-Objective Processing of Dental Panoramic Radiographs. Available online: http://cs231n.
stanford.edu/reports/2022/pdfs/118.pdf (accessed on 25 May 2022).

125. Yamanakkanavar, N.; Choi, J.Y.; Lee, B. Multiscale and Hierarchical Feature-Aggregation Network for Segmenting Medical
Images. Sensors 2022, 22, 3440. [CrossRef]

126. Chen, Q.; Zhao, Y.; Liu, Y.; Sun, Y.; Yang, C.; Li, P.; Zhang, L.; Gao, C. MSLPNet: Multi-scale location perception network for
dental panoramic X-ray image segmentation. Neural Comput. Appl. 2021, 33, 10277–10291. [CrossRef]

127. Zhao, Y.; Li, P.; Gao, C.; Liu, Y.; Chen, Q.; Yang, F.; Meng, D. TSASNet: Tooth segmentation on dental panoramic X-ray images by
Two-Stage Attention Segmentation Network. Knowl.-Based Syst. 2020, 206, 106338. [CrossRef]

128. Koch, T.L.; Perslev, M.; Igel, C.; Brandt, S.S. Accurate Segmentation of Dental Panoramic Radiographs with U-NETS. In
Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019.
[CrossRef]

129. Wang, H.C.; Tsai, M.T.; Chiang, C.P. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral
imaging. J. Opt. 2013, 15, 055301. [CrossRef]

http://dx.doi.org/10.3390/s21155192
http://www.ncbi.nlm.nih.gov/pubmed/34372429
http://dx.doi.org/10.1007/s11548-021-02319-y
http://www.ncbi.nlm.nih.gov/pubmed/33651298
http://dx.doi.org/10.11591/telkomnika.v11i6.2655
http://dx.doi.org/10.1109/icts.2015.7379870
http://dx.doi.org/10.1109/iac.2017.8280611
http://dx.doi.org/10.1016/j.eswa.2017.09.027
http://dx.doi.org/10.1109/iciccs48265.2020.9121104
http://dx.doi.org/10.1016/j.engappai.2006.01.011
http://dx.doi.org/10.1109/icmlc.2012.6359652
http://dx.doi.org/10.1259/dmfr.20190441
http://dx.doi.org/10.1007/s10278-020-00380-8
http://dx.doi.org/10.1186/s12903-022-02119-z
http://dx.doi.org/10.1016/j.media.2020.101904
http://www.ncbi.nlm.nih.gov/pubmed/33290934
http://dx.doi.org/10.3390/app10072547
http://dx.doi.org/10.1186/s12903-020-01256-7
http://dx.doi.org/10.1109/isbi.2019.8759437
http://dx.doi.org/10.1038/srep33581
http://www.ncbi.nlm.nih.gov/pubmed/27645567
http://cs231n.stanford.edu/reports/2022/pdfs/118.pdf
http://cs231n.stanford.edu/reports/2022/pdfs/118.pdf
http://dx.doi.org/10.3390/s22093440
http://dx.doi.org/10.1007/s00521-021-05790-5
http://dx.doi.org/10.1016/j.knosys.2020.106338
http://dx.doi.org/10.1109/isbi.2019.8759563
http://dx.doi.org/10.1088/2040-8978/15/5/055301


Diagnostics 2023, 13, 2196 29 of 30

130. Fält, P.; Hyttinen, J.; Fauch, L.; Riepponen, A.; Kullaa, A.; Hauta-Kasari, M. Spectral Image Enhancement for the Visualization of
Dental Lesions. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp.
490–498.

131. Hyttinen, J.; Falt, P.; Jasberg, H.; Kullaa, A.; Hauta-Kasari, M. Computational Filters for Dental and Oral Lesion Visualization in
Spectral Images. IEEE Access 2021, 9, 145148–145160. [CrossRef]

132. Lederer, A.; Kunzelmann, K.H.; Heck, K.; Hickel, R.; Litzenburger, F. In-vitro validation of near-infrared reflection for proximal
caries detection. Eur. J. Oral Sci. 2019, 127, 515–522. [CrossRef]

133. Litzenburger, F.; Heck, K.; Kaisarly, D.; Kunzelmann, K.H. Diagnostic validity of early proximal caries detection using near-
infrared imaging technology on 3D range data of posterior teeth. Clin. Oral Investig. 2021, 26, 543–553. [CrossRef] [PubMed]

134. Metzger, Z.; Colson, D.G.; Bown, P.; Weihard, T.; Baresel, I.; Nolting, T. Reflected near-infrared light versus bite-wing radiography
for the detection of proximal caries: A multicenter prospective clinical study conducted in private practices. J. Dent. 2022,
116, 103861. [CrossRef]

135. Zakian, C.; Pretty, I.; Ellwood, R. Near-infared hyperspectral imaging of teeth for dental caries detection. J. Biomed. Opt. 2009,
14, 064047. [CrossRef] [PubMed]

136. Usenik, P.; Bürmen, M.; Fidler, A.; Pernuš, F.; Likar, B. Automated Classification and Visualization of Healthy and Diseased Hard
Dental Tissues by Near-Infrared Hyperspectral Imaging. Appl. Spectrosc. 2012, 66, 1067–1074. [CrossRef]

137. Holtkamp, A.; Elhennawy, K.; de Oro, J.E.C.G.; Krois, J.; Paris, S.; Schwendicke, F. Generalizability of Deep Learning Models for
Caries Detection in Near-Infrared Light Transillumination Images. J. Clin. Med. 2021, 10, 961. [CrossRef]

138. Casalegno, F.; Newton, T.; Daher, R.; Abdelaziz, M.; Lodi-Rizzini, A.; Schürmann, F.; Krejci, I.; Markram, H. Caries Detection with
Near-Infrared Transillumination Using Deep Learning. J. Dent. Res. 2019, 98, 1227–1233. [CrossRef] [PubMed]

139. Schwendicke, F.; Elhennawy, K.; Paris, S.; Friebertshäuser, P.; Krois, J. Deep learning for caries lesion detection in near-infrared
light transillumination images: A pilot study. J. Dent. 2020, 92, 103260. [CrossRef] [PubMed]

140. Hossam, A.; Mohamed, K.; Tarek, R.; Elsayed, A.; Mostafa, H.; Selim, S. Automated Dental Diagnosis using Deep Learning.
In Proceedings of the 2021 16th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 15–16
December 2021. [CrossRef]

141. Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al.
Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022, 9, 862322.
[CrossRef]

142. Use of Artificial Intelligence (AI) in Dentistry-Dental News. Available online: https://www.dentalnews.com/2021/10/08
/artificial-intelligence-ai-dentistry/ (accessed on 4 August 2022).

143. Mörch, C.; Atsu, S.; Cai, W.; Li, X.; Madathil, S.; Liu, X.; Mai, V.; Tamimi, F.; Dilhac, M.; Ducret, M. Artificial Intelligence and
Ethics in Dentistry: A Scoping Review. J. Dent. Res. 2021, 100, 1452–1460. [CrossRef]

144. Yang, J.; Xie, Y.; Liu, L.; Xia, B.; Cao, Z.; Guo, C. Automated Dental Image Analysis by Deep Learning on Small Dataset. In
Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27
July 2018. [CrossRef]

145. Yu, H.; Cho, S.; Kim, M.; Kim, W.; Kim, J.; Choi, J. Automated Skeletal Classification with Lateral Cephalometry Based on
Artificial Intelligence. J. Dent. Res. 2020, 99, 249–256. [CrossRef]

146. Wu, H.; Wu, Z. A Few-Shot Dental Object Detection Method Based on a Priori Knowledge Transfer. Symmetry 2022, 14, 1129.
[CrossRef]

147. Kumar, P.; Bhatnagar, R.; Gaur, K.; Bhatnagar, A. Classification of Imbalanced Data:Review of Methods and Applications. IOP
Conf. Ser. Mater. Sci. Eng. 2021, 1099, 012077. [CrossRef]

148. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

149. You, A.; Kim, J.K.; Ryu, I.H.; Yoo, T.K. Application of generative adversarial networks (GAN) for ophthalmology image domains:
A survey. Eye Vis. 2022, 9, 6. [CrossRef] [PubMed]

150. Harron, K.L.; Doidge, J.C.; Knight, H.E.; Gilbert, R.E.; Goldstein, H.; Cromwell, D.A.; van der Meulen, J.H. A guide to evaluating
linkage quality for the analysis of linked data. Int. J. Epidemiol. 2017, 46, 1699–1710. [CrossRef]

151. Garcia, I.; Kuska, R.; Somerman, M. Expanding the Foundation for Personalized Medicine. J. Dent. Res. 2013, 92, S3–S10.
[CrossRef]

152. Viswanathan, A.; Patel, N.; Vaidyanathan, M.; Bhujel, N. Utilizing Teledentistry to Manage Cleft Lip and Palate Patients in an
Outpatient Setting. Cleft Palate-Craniofac. J. 2021, 59, 675–679. [CrossRef]

153. Sharma, H.; Suprabha, B.S.; Rao, A. Teledentistry and its applications in paediatric dentistry: A literature review. Pediatr. Dent. J.
2021, 31, 203–215. [CrossRef]

154. Estai, M.; Bunt, S.; Kanagasingam, Y.; Tennant, M. Cost savings from a teledentistry model for school dental screening: An
Australian health system perspective. Aust. Health Rev. 2018, 42, 482. [CrossRef]

155. Joda, T.; Yeung, A.; Hung, K.; Zitzmann, N.; Bornstein, M. Disruptive Innovation in Dentistry: What It Is and What Could Be
Next. J. Dent. Res. 2020, 100, 448–453. [CrossRef]

156. Salagare, S.; Prasad, R. An Overview of Internet of Dental Things: New Frontier in Advanced Dentistry. Wirel. Pers. Commun.
2019, 110, 1345–1371. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3121815
http://dx.doi.org/10.1111/eos.12663
http://dx.doi.org/10.1007/s00784-021-04032-1
http://www.ncbi.nlm.nih.gov/pubmed/34636940
http://dx.doi.org/10.1016/j.jdent.2021.103861
http://dx.doi.org/10.1117/1.3275480
http://www.ncbi.nlm.nih.gov/pubmed/20059285
http://dx.doi.org/10.1366/11-06460
http://dx.doi.org/10.3390/jcm10050961
http://dx.doi.org/10.1177/0022034519871884
http://www.ncbi.nlm.nih.gov/pubmed/31449759
http://dx.doi.org/10.1016/j.jdent.2019.103260
http://www.ncbi.nlm.nih.gov/pubmed/31821853
http://dx.doi.org/10.1109/icces54031.2021.9686185
http://dx.doi.org/10.3389/fsurg.2022.862322
https://www.dentalnews.com/2021/10/08/artificial-intelligence-ai-dentistry/
https://www.dentalnews.com/2021/10/08/artificial-intelligence-ai-dentistry/
http://dx.doi.org/10.1177/00220345211013808
http://dx.doi.org/10.1109/compsac.2018.00076
http://dx.doi.org/10.1177/0022034520901715
http://dx.doi.org/10.3390/sym14061129
http://dx.doi.org/10.1088/1757-899X/1099/1/012077
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1186/s40662-022-00277-3
http://www.ncbi.nlm.nih.gov/pubmed/35109930
http://dx.doi.org/10.1093/ije/dyx177
http://dx.doi.org/10.1177/0022034513487209
http://dx.doi.org/10.1177/10556656211023244
http://dx.doi.org/10.1016/j.pdj.2021.08.003
http://dx.doi.org/10.1071/AH16119
http://dx.doi.org/10.1177/0022034520978774
http://dx.doi.org/10.1007/s11277-019-06790-4


Diagnostics 2023, 13, 2196 30 of 30

157. Liu, L.; Xu, J.; Huan, Y.; Zou, Z.; Yeh, S.C.; Zheng, L.R. A Smart Dental Health-IoT Platform Based on Intelligent Hardware, Deep
Learning, and Mobile Terminal. IEEE J. Biomed. Health Inform. 2020, 24, 898–906. [CrossRef] [PubMed]

158. Vellappally, S.; Al-Kheraif, A.A.; Anil, S.; Basavarajappa, S.; Hassanein, A.S. Maintaining patient oral health by using a
xeno-genetic spiking neural network. J. Ambient. Intell. Humaniz. Comput. 2018. [CrossRef]

159. Sannino, G.; Sbardella, D.; Cianca, E.; Ruggieri, M.; Coletta, M.; Prasad, R. Dental and Biological Aspects for the Design of
an Integrated Wireless Warning System for Implant Supported Prostheses: A Possible Approach. Wirel. Pers. Commun. 2016,
88, 85–96. [CrossRef]

160. Kim, I.H.; Cho, H.; Song, J.S.; Park, W.; Shin, Y.; Lee, K.E. Assessment of Real-Time Active Noise Control Devices in Dental
Treatment Conditions. Int. J. Environ. Res. Public Health 2022, 19, 9417. [CrossRef] [PubMed]

161. Vitale, M.C.; Gallo, S.; Pascadopoli, M.; Alcozer, R.; Ciuffreda, C.; Scribante, A. Local anesthesia with SleeperOne S4 computerized
device vs traditional syringe and perceived pain in pediatric patients: A randomized clinical trial. J. Clin. Pediatr. Dent. 2023, 47,
82–90. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JBHI.2019.2919916
http://www.ncbi.nlm.nih.gov/pubmed/31180873
http://dx.doi.org/10.1007/s12652-018-1166-8
http://dx.doi.org/10.1007/s11277-016-3244-6
http://dx.doi.org/10.3390/ijerph19159417
http://www.ncbi.nlm.nih.gov/pubmed/35954774
http://dx.doi.org/10.22514/jocpd.2023.002
http://www.ncbi.nlm.nih.gov/pubmed/36627224

	Introduction
	Materials and Methods
	Protocol
	Electronic Search Strategy
	Eligibility Criteria
	Inclusion Criteria
	Exclusion Criteria

	Study Selection and Items Collected

	Imaging Modalities for Dental Disease Diagnosis
	X-ray Imaging Systems
	Intraoral X-ray Imaging
	Extraoral X-ray Imaging

	Near Infrared Imaging Systems
	Spectral Ranges
	Challenges in Automated Dental Disease Diagnosis

	Dataset and Evaluation Metrics
	 Benchmarks and Datasets
	ISBI2015 Grand Challenge Dental Dataset
	Panoramic Dental X-ray Dataset Kaggle
	UFBA-UESC Dental Image Data Set Silva2018
	Tufts Multimodal Panoramic X-ray Dataset Tufts

	Evaluation Metrics

	Approaches to Dental Disease Diagnosis Using X-ray Imaging
	Image Enhancement
	Disease Detection
	Disease Classification
	Disease Segmentation
	Benchmarking of X-ray Based Dental Disease Diagnosis Approaches

	Approaches to Dental Disease Diagnosis Using Near Infrared Imaging Systems
	Image Enhancement
	Disease Detection
	Disease Classification
	Disease Segmentation
	Benchmarking of Near Infrared Based Dental Disease Diagnosis
	Assessment of Risk Bias

	Ethical Considerations and Future Research Directions
	Ethical Considerations
	Research Gaps and Future Research Directions
	Data Insufficiency
	Class Imbalance Learning
	Personalized Dental Medicine
	Tele-Dentistry
	Internet of Dental Things (IoDT)


	Conclusions
	References

