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Abstract: In the field of natural language processing, machine translation is a colossally developing
research area that helps humans communicate more effectively by bridging the linguistic gap. In
machine translation, normalization and morphological analyses are the first and perhaps the most
important modules for information retrieval (IR). To build a morphological analyzer, or to complete
the normalization process, it is important to extract the correct root out of different words. Stemming
and lemmatization are techniques commonly used to find the correct root words in a language.
However, a few studies on IR systems for the Urdu language have shown that lemmatization is more
effective than stemming due to infixes found in Urdu words. This paper presents a lemmatization
algorithm based on recurrent neural network models for the Urdu language. However, lemmatization
techniques for resource-scarce languages such as Urdu are not very common. The proposed model is
trained and tested on two datasets, namely, the Urdu Monolingual Corpus (UMC) and the Universal
Dependencies Corpus of Urdu (UDU). The datasets are lemmatized with the help of recurrent
neural network models. The Word2Vec model and edit trees are used to generate semantic and
syntactic embedding. Bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent
unit (BiGRU), bidirectional gated recurrent neural network (BiGRNN), and attention-free encoder–
decoder (AFED) models are trained under defined hyperparameters. Experimental results show that
the attention-free encoder-decoder model achieves an accuracy, precision, recall, and F-score of 0.96,
0.95, 0.95, and 0.95, respectively, and outperforms existing models.

Keywords: neural networks; natural language processing; inflectional morphology; derivational
morphology

MSC: 68T50

1. Introduction

In today’s modern world, almost every job involves the use of computers, resulting in
the production of a massive amount of data that needs to be processed and analyzed by
computers [1]. Natural language processing (NLP) is the computerized study of human
languages that have naturally evolved over time. NLP and machine translation (MT) are
fields that are constantly evolving and helping to bridge the linguistic gap between individ-
uals. To comprehend the development of MT algorithms, along with a strong vocabulary,
the knowledge of different modules including morphological analysis and normalization is
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also required. In the morphological analysis of a language, the morphological structure
of different words is analyzed while in information retrieval applications, stemming and
lemmatization are the preprocessing steps [2]. Stemming is the process of removing prefixes
and/or suffixes from an inflectional or derivational word to obtain the stem as an output [3].
However, in several Semitic languages, such as Arabic, Hebrew, Syriac, and Urdu, infixes
can also be found in many words. An infix is a morpheme that is positioned between the
base/root word, following a specific morphological balance/pattern. There are no prefixes
or suffixes attached to such words, although they do contain infixes. Urdu is one of the
languages with many infixes. This implies that the stemming procedures in such languages
should consider stemming the infixes as well [4].

In semantics, the objective of lemmatization is to group the various inflected forms
of a word to break them down into a common form and analyze them as a basic term. It
involves the use of vocabulary and morphological analysis of words, intending to remove
inflectional endings from the words and return their base or dictionary form i.e., a lemma
(plural lemmas or lemmata). For example, in the English language sit, sits, and sitting are
all forms of the verb sit; therefore, sit is the lemma of all these words. Lemmatization is
the most used approach in any IR application, including indexing and searching. A few
studies on IR systems for the Urdu language have shown the effectiveness of lemmatization
instead of stemming [5]. However, lemmatization techniques for resource-scarce languages
such as Urdu have not received much attention [6].

There are very few existing studies on Urdu lemmatization and all these studies use a
rule-based approach [7]. These studies lack the ability to handle noun identification and
while lemmatizing proper nouns are also lemmatized, which changes the meaning and
the context of the actual word. Moreover, these studies do not handle stop words that are
removed from the corpora upon lemmatization. Additionally, these studies do not deal
with loan words, inflectional and derivational morphemes, and diacritized Urdu words.
Although many studies apply machine learning and neural network models for lemmati-
zation in various languages, yielding higher performance, to the best of our knowledge,
no existing study applies these techniques to the Urdu language. In this study, we present
an improved lemmatization algorithm based on recurrent neural network (RNN) models
for the Urdu language. The proposed model deals with the detection of proper nouns by
generating semantic embeddings and lemmatizing accordingly, if required. Additionally,
the model successfully handles the lemmatization of inflectional and derivational Urdu
morphological words. The proposed model also successfully handles around 344 stop
words during lemmatization as well as diacritized Urdu words and loan words. In a
nutshell, we make the following main contribution:

• An Urdu lemmatization algorithm based on four RNN models, namely BiLSTM,
BiGRU, BiGRNN, and AFED, is presented.

• Lemmatization is performed to find the accurate and legitimate lemma from the two
Urdu corpora.

• Semantic and syntactic embeddings are created using the Word2Vec model and edit
trees are generated from the word lemma pairs available in the input file.

• The proposed approach successfully handles proper nouns, inflectional and deriva-
tional morphemes, stop words, loan words, and diacritized Urdu words.

• Accuracy, precision, recall, and F-score evaluation measures are used to evaluate the
performance of the proposed approach.

The rest of the paper is organized as follows. Section 2 presents the literature review.
Section 3 discusses the background of Urdu language morphology. Section 4 discusses
the proposed methodology followed by evaluation and discussion on results in Section 5.
Section 6 concludes the paper.
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2. Related Work

Various studies have been conducted on the lemmatization of resource-scarce lan-
guages. In this section, we discuss some of the existing studies based on the techniques
used in these studies for lemmatization and their findings.

A rule-based approach is used for the lemmatization of the Hindi language in [8]. Dic-
tionary and rule-based lemmatization is used for lemmatization of Mongolian language [9]
which is an enhanced version of the lemmatization method developed by Khaltar et al. [10].
Suhartono et al. [11] develop an algorithm for the lemmatization of Bahasa Indonesia based
on the enhanced confix stripping stemmer. Boudchiche et al. [2] present a hybrid approach
to Arabic lemmatization that assigns a single lemma to each Arabic word and then takes
the context of that word into account. A statistical task based on the hidden Markov models
is used for lemmatization. For a labeled corpus of around 500000 words, the lemmatizer
identifies the correct lemma with an accuracy of 94.45%. Plisson et al. [12] use a rule-based
approach for word lemmatization in the Slovene language.

Freihat et al. [13] perform lemmatization on the Arabic language using a machine-
learning approach and dictionary-based lemmatization. Both techniques are used sepa-
rately and yield an accuracy of 95%. Results show that with the use of a dictionary of lemma-
tization, the underlying pipeline of NLP gets an additional boost. Chakrabarty et al. [14,15]
implement a neural lemmatizer to extract the lemma from the Bengali corpus that outper-
forms a simple Bengali lemmatizer with the cosine similarity margin of 1.37%. Putz et al. [16]
conduct a structural study on the morphological and neural-based approach to German
language lemmatization. Kondratyuk et al. [17] evaluate the bidirectional RNN model on
languages such as Arabic, German, and Czech and show a higher lemmatization accuracy
than part-of-speech tagging and state-of-the-art techniques.

Jabbar et al. [5] present a survey on different techniques and algorithms developed
for stemming and lemmatization of Urdu and similar languages and evaluate them for an
Urdu corpus. The results show that the lemmatization approach is better as compared to
the stemming techniques. Gupta et al. [7] present a rule-based lemmatizer for the Urdu
language that subtracts the suffix from the main word and adds some other related words
or information to obtain the desired meaning. The proposed approach decreases the time
complexity, and when applied to a test dataset of thousand words, extracts the correct
“lemma" with an accuracy of 90.30%. Humayoun et al. [18] use rule-based lemmatization
for the Urdu language and achieve an accuracy of 65.20% for segmented corpus.

Although many studies applying machine learning and neural-based lemmatization
to various languages yield higher performance, to the best of our knowledge, no existing
study applies these techniques to the Urdu language. Table 1 summarizes different lemma-
tization approaches used for various resource-scarce languages, along with the benefits
and drawbacks of each approach.



Mathematics 2023, 11, 435 4 of 20

Table 1. Summary of different lemmatization approaches applied for various resource-scarce languages.

Techniques Benefits Drawbacks Language

Statistical task-based using
hidden Markov models

Higher accuracy as the model has the ability to learn complex patterns and
dependencies existing between inflected forms of a word and its lemma.

Requires large-annotated training data, which is not readily available, to learn the probabilistic
relationships between the different word forms and their lemmas.

Arabic [2]Efficiently handles large datasets, making them well-suited for lemmatization
tasks where the goal is to process a large amount of text.

Agnostic of the context in which a word appears, hence unable to accurately lemmatize words having
multiple possible lemmas depending on the context.

Language-agnostic which helps build a lemmatizer for any language
provided there is enough training data available.

Based on probabilistic models of word form and lemma relationships, hence unable to handle unusual
or unexpected word forms, leading to errors/inaccuracies in lemmatization.

Rule-based approach

Higher accuracy as it is based on pre-defined rules, list of lemmas and their
corresponding inflected forms.

Lacks generalization, as it is dependent on the list of rules that requires comprehensive knowledge of
the language.

Hindi [8]
Mongolian [9,10]
Bahasa Indonesia [11]
Slovene [12]
Urdu [7,18]

Does not require model training like ML-based techniques. Error-prone to rare or unusual inflections because of predefined rules. Therefore, should be used in
conjunction with other techniques, such as stemming.

Customizable to specific languages/domains, allowing for greater control
over the stemming or lemmatization process.

It is time-consuming as it requires defining a predefined list of rules and a set of suffixes for
each language.

Agnostics to the context of the word and cannot accurately lemmatize words that may have different
meanings in different contexts.

Has limited coverage as it is unable to handle a wide range of inflections and derivations, leading to
inaccurate lemmatization for words that are not covered by the rules.

Not adaptable to new words or changes in the language.

Unable to capture the full range of variations and complexities of a language, leading to lower
stemming and lemmatization accuracy.

Machine and deep learning
based approach

Neural networks can learn complex patterns and relationships in data,
leading to improved accuracy in lemmatization.

Neural network-based lemmatization can be complex and resource-intensive, requiring significant
computational power and memory.

Bengali [14,15]
German [16]
Arabic, German,
Czech [17]

Well-suited to train and test large data, hence practical choice for
lemmatization on even very large corpora.

Neural network-based lemmatization requires a large amount of annotated training data to learn the
patterns and relationships between word forms and lemmas. If enough annotated data are not available,
the accuracy of the lemmatization may be limited.

Can consider the context in which a word appears, leading to improved
accuracy of lemmatization for words with multiple possible lemmas
depending on the context.

Dependent on the choice of hyperparameters.

Able to handle a wide range of inflections as it learns from the data rather
than relying on predefined rules. Less practical choice for tasks where computational resources are limited.

Can generalize well to new data, as it is able to learn patterns in the data
rather than memorizing specific examples.

Hybrid approach

Useful in cases where rule-based or machine and deep learning approach
alone is not sufficient to accurately stem a wide range of words.

More complex to implement and understand, and requires more computational resources than a single
technique, as it involves combining multiple techniques.

Arabic [13]
Urdu [5]

Often achieves higher accuracy than a single technique, as it takes advantage
of the strengths of multiple techniques. Less practical choice for tasks where computational resources are limited.

More robust since it can use the dictionary to derive a word’s lemma even if
the word is not seen during training.

Can be customized to handle specific inflections or words by adding them to
the dictionary.
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3. Morphologically of Urdu Language

The Urdu language is a combination of a few other languages including Arabic,
Turkish, Persian, and Hindi. All these languages are characterized by their complex mor-
phological structure. This results in wide linguistic variations in phonology and grammar of
the language causing difficulties in the development of a lemmatization algorithm. Studies
on Urdu morphology show that a single Urdu lemma can have approximately 57 distinct
forms. Consider the Urdu lemma “ë�QK�” -/parh/ (read), from which multiple variants can
be generated, as shown in Figure 1.

Figure 1. The many distinct forms of the Urdu lemma “ë�QK�” -/parh/ (read).
The words “ A

	
K Aë �QK�” -/parhana, “ A

	
K @ñë�QK�” -/parhwana, “ A

�
K @ñë�QK�” -/parhwata, “ú




�
GAë �QK�” -

/parhatay, “ @ñë�QK�” -/parhwa, “ A
�
KAë �QK�” -/parhata translate to the English word “teach” in

various contexts while the words “àñë�QK�” -/parhoon, “ñë�QK�” -/parho, “á�ë�QK�” -/parhain,

“ú
	

æë�QK�” -/parhni, “ùë�QK�” -/parhi, “ù



ë�QK�” -/parhay, “ú



	
æë �QK�” -/parhanay, “ A

	
Jë �QK�” -/parhana,

“ Aë �QK�” -/parha translate to the English word “read” in various contexts.

3.1. Vowels in Urdu

The Urdu language is written from right to left and consists of around 48 consonants
known as Urdu characters, 10 long vowels, 6 short vowels, and 4 diacritics. A few examples
are shown in Table 2. These characters need to be handled correctly to get the correct lemma
out of such words.

Table 2. Examples of long vowels, short vowels, and diacritics in Urdu Morphology.

Long Vowel Short Vowel Diacritic

Symbol Example Symbol Example Symbol Example
�
@ ð

�
@ -/O

�
@ ¸A

�
K� -/Pak à á�Ó -/Maine

ø



@ ø



�
@ -/Aye ø ÉÓA¿ úÍð -/Wali-e-Kaamil Z ÉJ
«AÖÞ� @

�
-/Ismail

@� ø@� -/E 
þ

	á�Ó 	P ù




KðP -/Ru-e-Zameen

�
@

�
I

�	
�K. -/Bint

ð@ ð
�
@ -/Aao

�
@ 	á�

�
k -/Husn

�
@ í

f
�

�PYÓ -/Madrasa

3.2. Spellings in Urdu

The spellings (ú


j
.
ï
f
) of words in the Urdu language are often modified to account for

features such as gender, number, tense, and case. For example, in the following sentence,
the word “ù


KAêºË” -/likhaee/ (handwriting) is the inflected form of lemma“êºË” -/likh/
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(write). It uses the inflectional affix “ù

K+” to change the grammatical form of the word

from verb to noun and gender from masculine to feminine. Similarly, the word “ �
HPñ��. ñ

	
k”

-/khoobsurat/ (beautiful) is the inflected form of the lemma “H. ñ
	

k” -/khoob/ (good) and

affix “ �
HPñ�+”, respectively.

ù



ï
f

�
HPñ��. ñ

	
k

�
Iî

f
E. ù


KAêºË øQ�Ó

(My handwriting is very beautiful)

3.3. Inflections and Derivations in Urdu

In the Urdu language, the gender of a word, i.e., masculine/feminine, and the num-
ber, i.e., singular/plural are recognized by inflections which are represented by the case,
i.e., direct, oblique, and vocative whereas derivations are the words added to some other
categories such as nouns, adjectives, or verbs to make a new word, i.e., their forms and
types are derived from some other words [19]. A few of such inflections and derivations
are discussed in Table 3. Such properties of Urdu morphology cause many complications
in the development of contextual lemmatization algorithms.

Table 3. Morphological-based discussion of a few inflectional and derivational words in the
Urdu language.

Word Type Discussion

ø 	PAmk
.

, ú
	
GAK� Inflectional Both end with “ø”, making them feminine but in reality, they are

masculine in nature.


ðAî

f
E. ,


ðAm�

�'
. Derivational These masculine abstract nouns are the resultant of causative verbs

when their roots are attached with “ 
ð”.

3.4. Loan Words in Urdu

Since the Urdu language is a mixture of many languages, the words whose origin
belongs to other languages are known as loan words [20]. The inclusion of loan words in
the vocabulary of the Urdu language makes its morphology more complicated. Common
loan languages include Arabic, Hindi, Persian, Turkish, and English. A few examples of
loan words or borrowed words are shown in Table 4.

Table 4. A few examples of load words used in the Urdu language.

Loan Language Loan Words

Persian 	
àAÇY

	
J

KAÖ

	
ß �

	
®

	
K Ñï

f
Pñ

�
�

	
� @X ð 	PAK.

�
I
�

�X

Arabic Yg. A�Ó hA
�
J
	
®Ó 	áKX A�ÒÊ«

�
I�

	
Kñ

	
KA

�
¯ B

English ÕËA¿ (Column) 	ám.
�

	
' @ (Engine) É¾J


KA� (Cycle) Q

�
�Jï

f
(Heater)

Turkish X@YÓ@ 	áKQ
�
KYK. I. »QÓ Õæ�@QÓ

3.5. Nouns and Verbs in Urdu

In the Urdu language, a noun’s lemma is its singular masculine form without diacritics.
For example, lemma of the noun “

��
HA

�
ÒÊ�

�
ª

�
Ó” -/mualimaat/ (female teachers), is “ÕÎªÓ” -

/mualim/ (male teacher). However, the lemma of a verb in Urdu is its root form without
any gender information e.g., the lemma of the verb “ AK @ñêºË” -/likhwaya/ (to make someone

write) is “êºË” -/likh/ (write).
Lemmatization and stemming can be tricky in the Urdu language because of ambi-

guities in a few words [4], e.g., the resulting lemma for the words “ 	
àAÒî

f
Ó” -/mehmaan/
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(guest),“ñk. Ñî
f
Ó” -/muhim jo/ (adventurer), and “ �

HAÒî
f
Ó” -/muhmaat/ (adventures) is the

word “Ñî
f
Ó” -/muhm/ (adventure), which is correct for the word “ �

HAÒî
f
Ó” -/muhmaat/

(adventures) and “ñk. Ñî
f
Ó” -/muhim jo/ (adventurer) but not for the word “ 	

àAÒî
f
Ó” -

/mehmaan/ (guest) because “ 	
àAÒî

f
Ó” itself is a root word. Similarly, for the word “úæ

	
�@PA

	
K”

-/narazi/ (outrage), lemmatization provides “ 	
�@P” -/raz as the lemma by chopping the

morpheme “ A
	
K” -/na considering it a prefix and “ø” considering it a postfix, resulting in an

incorrect lemma. However, the correct lemma for the word “úæ
	
�@PA

	
K” -/narazi/(outrage)

is “ 	
�@PA

	
K” -/naraz/ (angry), which gives the accurate dictionary meaning of the word and

related morphological properties [5].

4. Proposed Methodology
4.1. Corpus Selection and Preprocessing

For this study, we perform lemmatization on two Urdu corpora, i.e., the Urdu Mono-
lingual Corpus (UMC) [20] and the Universal Dependencies Corpus of Urdu (UDU) [21,22],
which comprise 5,464,575 and 5,130 sentences, respectively. Sentences are annotated in the
ten-column CoNLL-U format.

Preprocessing of both UMC and UDU datasets involves multiple different steps.
The initial step is sentence splitting. For sentence splitting in the Urdu language, full stop
“í

f
Ò
�
J

	
k (-)” and question mark “( ?)í

f
JË @ñ�” are called sentence boundaries. Data redundancy

is minimized and only unique occurrences are kept. Arabic and Quranic quotes as well
as English translations of a few Arabic phrases are removed manually. The Western and
Eastern Arabic numerals available in the sentences are removed as they are not required
to be lemmatized. The segmented sentences of both datasets are tokenized. The control
and space characters are detected and replaced by “\n” so that each token appears on a
new line. The sentence boundary operators are replaced with an empty line so that the end
of the previous sentence and the start of the new sentence can be figured out. Additional
noise including brackets, colons or semi-colons, invalid UTF-8 characters, and punctuation
marks is also discarded. Figure 2 shows the characters that were removed.

Figure 2. Noise removed while dataset preprocessing.

4.2. Experimental Design and Setup

The proposed model requires the creation of initial data files including the parameters
files. Two different embeddings are used to achieve higher accuracy. One is semantic
embedding Wsem

e and the other is syntactic embedding Wsyn
e . The model does not rely on

human-defined features or a morphological tag set, but it requires a gold lemma based on a
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training dataset. An input training file has words wiSi
t and their respective lemma liSi

t tab
separated. After every sentence, there should be a “\n” to get the count of all sentences
∑ St.

The Word2Vec model file [23,24] is created to retrieve the semantic information of a
word Wsem

e from the context words. There are two different approaches to get the word
vectors out of corpora with the vocabulary of size N. The continuous bag of words (CBOW)
model is used to get the Wsem

e from the context words. To calculate the vector representation,
it takes the context terms to the left wi−2, wi−1 and right wi+1, wi+2 of the word wi taken
as input. This word window can be adjusted to increase or decrease the size of the local
context associated with the word embedding. A negative sampling is preferred to get
around 200-dimensional word vectors. Figure 3 shows the feed-forward neural network of
CBOW–Word2Vec.

Figure 3. CBOW model for generating Wsem
e .

A parameter file is created to set up the model parameters. The first parameter is
the cell type of the character-level network. It can be any of the models we are working
on, i.e., BiLSTM, BiGRNN, or BiGRU. The second parameter should be the maximum
word length in a number of characters. For words with more characters than this value,
the excess characters will be truncated. In the proposed model, we consider a sample of 25
characters per word. Words shorter than 25 characters are padded with null characters at
the end whereas, for the longer words, excess characters are truncated. The third parameter
includes the number of neurons in the cell of the character-level network. The embedding
using the Word2Vec file name should be given as the fourth parameter. The fifth parameter
should be the cell type of the second-level recurrent network which does the edit tree
classification. The number of neurons in the cell of the edit tree classifier is given as the
sixth parameter. The number of epochs for the training of the network is the seventh
parameter. Epochs E can vary according to need and can be set to any integer value.
For this study, the epoch value is set to 50. The eighth parameter gives the batch size for
the training of the network. A training dataset can be divided into one or more batches.
The ninth parameter is the divide file factor. For large corpora, generating the data matrices
(class annotation matrices, applicable edit trees matrices, char vector matrices, etc.), which
will be generated while running the code, takes too much time. To reduce the time, we
fragment the matrices part by part and then dump them in the disk and reload them part
by part. To evaluate the lemmatization results on a test file, the gold lemma of each word is
created. The format of this file is like the training file. The words in corpora are refined and
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according to �
HA

	
ªË ðXP@ , øQKQ�.


KB ðXP@ ,

�
HA

	
ªË @ 	PðQ�

	
¯ Urdu dictionaries, the accurate lemma of

the words is copied for further evaluation purposes.
Initially, the edit trees are constructed that map a word to its given lemma. All the

extracted unique edit trees are associated with the surface word lemma pairs provided in
the training file. Here the requirement is that for each test word, the correct edit tree should
be identified by the model so that the exact lemma is generated. The words available in the
training corpora are then annotated by their corresponding edit trees. A sample example of
the edit tree is shown in Figure 4. It shows the lemma pair of an inflected noun “ú

	
GAÔg

.
Q
�
K ”

-/tarjamani/(representation). In the right edit tree, the root node stores the length of prefix
“Q

�
K” (2) and suffix “ú

	
G @” (3), whereas the left edit tree visualizes what each node corresponds

to. The model uses the right edit tree.

Figure 4. Edit tree example of a word lemma pair of an inflected noun “ú
	
GAÔg

.
Q
�
K” -/tarjamani/

(representation).

For Wsyn
e of a contextual word, each word becomes an array of the length of 25 charac-

ters and is represented as a one-hot encoded vector. This vector then becomes the input
of the embedding layer. To get the syntactic structure of an input word win for the dimen-
sional vector vd, a sequence of characters c1, c2, ..., cs is defined from the alphabet character
class Ca, where s represents the word length and a single character ci is defined as one hot
encoded vector shown as 1vi. Next, the embedding layer is specified as:

Lc = RvE×|Ca | (1)

where each 1vi is projected to a dimensional vector VE. Using Equation (1), the projected
vector Pci corresponding to each character ci is obtained using Equation (2), which is a
matrix multiplication operation specified by the dot operator.

Pci = Lc.1vi (2)

These generated sequences of projected vectors are given as input to the LSTM cell that
computes the state sequences t1, t2, ..., tm using the given Equations (3) to (7) of input gate
it, forget gate ft, and output gate ot. In the following given equations, weight matrices are
denoted by X, Y, and Z, where b is the bias parameter and� is the element-wise Hadamard
product and σ denotes the sigmoid function.

ft = σ(X f xt + Yf tm−1 + Z f ct−1 + b f ) (3)

it = σ(Xixt + Yitm−1 + Zict−1 + bi) (4)

ot = σ(Xoxt + Yotm−1 + Zoct−1 + bo) (5)

ct = ft � ct−1 + it � tanh(Xcxt + Yctm−1 + bc) (6)

tm = ot � tanh(ct) (7)
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Then the GRU gives the rules for updating which are followed by Equation (8). In the
GRU model, two gates are mainly used, update gate ut and reset gate gt.

tm = (1− ut)� t(m− 1) + ut � tanh(Xtxt + Yh(gt � tm−1) + bt) (8)

The sequence of projected character Pci is given by pc1, pc2, ..., pcm. The forward and
backward networks of given BiLSTM and BiGRU computed the state sequences t f

1 , t f
2 , ..., t f

m

and tb
m, ..., tb

1 for the given projected character sequences, respectively. So, finally, the syntac-
tic embeddings for a word w are given by merging both final states of the two sequences. It
is denoted by Wsyn

e and given by the following relation.

Wsyn
e = [tb

1, t f
m] (9)

The composite representation of both Wsem
e and Wsyn

e embeddings is denoted by Wcom
e

and given by
Wcom

e = [Wsem
e , Wsyn

e ] (10)

The next step is to feed the sentence-wise data to the neural network model set up
in the parameter file. It can either be simple BiGRNN, BiGRU, or BiLSTM. The model is
trained to get the edit tree classification tasks. In context-sensitive lemmatization, the local
context of words is extracted from these second-level bidirectional models which are in
forwarding and backward directions. The inputs of the BiGRNN, BiLSTM, and BiGRU
models are given by the w1com

e , ..., wncom
e sequence. The output yt in BiGRNN is determined

by the given equation

P(yt|{xd}d 6=t) = ϕ(W f
y h f

t−1 + Wb
y hb

b+1 + by) (11)

Similarly, when the BiLSTM model is under discussion the basic idea is to process
the sequence x = (x1, x2, ..., xt) forward and backward. Therefore, a bidirectional LSTM
has a forward and backward part. Their hidden states

−→
h and

←−
h are connected to the

output layer by the FNN. Using the last hidden states, the outcome yt at the output gate is
computed similarly to the following equation.

yt = W−→
hy

−→
ht + W←−

hy

←−
ht + by (12)

While BiGRU processes data in both directions with forward and backward hidden
layers. Let −→y T

1 be the forward output of the BiGRU by processing the input sequence xT
1

through t = 1, 2, ..., T and let←−y T
1 be the corresponding backward output by processing the

input sequence in the reverse direction through t = T, ..., 1. The output yT
1 of the BiGRU is

the stepwise concatenation of the forward and backward output.

yt = (−→yt ,←−yt ) (13)

For the ith input vector, which is wicom
e , t f

i gives the forward states where the backward
states are given by tb

i . While incorporating the information from the edit trees into the
neural network model, we need to extract the unique edit trees as all the edit trees do not
apply to the word. To avoid incompatible substitutions, we need to sort out the subclasses
for the training set from the class labels. So here the model will learn how to get the
applicable mass of the unique edit tree. Let us say, set T contains the distinct edit trees,
and set A contains the applicable edit trees. Given that the element aj is an application for
wi, Ai is the set that holds the final classification of forward and backward states using
“SoftPlus" as an activation function.

Ii = so f tplus(G f t f
i + Gbtb

i + Ga Ai + bl) (14)

f (x) = ln(1 + ex) (15)
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To pick the accurate edit tree from the softmax layer, we select the maximum class
probability and the class with the highest probability is selected as the right candidate by
using the following function in which oj represents the output of the softmax layer.

j = argmax
j′∈{1,...,k}∧aj′

i =1
oj′

i (16)

Figure 5 shows the model for the bidirectional gated neural network. There are
multiple hyperparameters over which the working of the bidirectional neural network
models is dependent. The number of hidden neurons for both layers, the number of epochs
and batch size, the optimization algorithm, and loss function are described to get the proper
results of the model. Mostly online results of parameters are used to update the weights of
bidirectional neural networks. Other than that, the number of epochs and the number of
neurons varies. The drop rate is set up to 0.2, epochs are 50, and neurons are 64. In this
model, cross_entropy is used as the loss function.

Figure 5. Second-level bidirectional gated neural network model (BiGRNN, BiLSTM, and BiGRU).

We performed another experiment using the same datasets and the same word em-
bedding files but changing the bidirectional gated neural network model with the encoder–
decoder system as shown in Figure 6. The attention-based encoder-decoder model seems to
be complex and resource-consuming for lemmatization, so we propose an AFED model that
is composed of a three-layered bidirectional LSTM encoder and a three-layered unidirec-
tional LSTM decoder. The AFED model is computationally less expensive and provides a
3% to 5% increase in accuracy (at word level) as opposed to its attention-based counterpart,
as discussed in [25].
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Figure 6. AFED model with a bidirectional LSTM encoder and unidirectional LSTM decoder.

We establish the “gold standard" decoder output based on the alignments which
intend to copy as many input characters as possible to the output while increasing the input
cursor and producing new symbols only as the last option. AFED provided state-of-the-art
performance. The whole experimentation model is shown in Figure 7.

Figure 7. Layman architecture describing contextual Urdu lemmatization using RNN models.
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5. Results and Discussions

For Urdu language lemmatization, few hyperparameters were set after multiple
trainings of the dataset and standard hyperparameters were found. The maximum word
length was set to 25 characters. The number of neurons was 64 and the number of epochs
was 50. The batch size was set to 1, where the file divide factor was 2000. Three dense
hidden layers were used and the dropout rate was set to 0.2. Softmax was used as an
activation function. Adam optimizer was used with a learning rate of 0.001. Categorical
cross entropy was used as the loss function. Over these hyperparameters, the model is
trained and eventually tested for better results. The ratio of training, testing, and validation
dataset is 80%, 20%, and 10%, respectively. Figure 8 shows the loss of training and validation
sets for the four models used in this study.

Table 5 shows the overall results of both datasets. The accuracy, precision, recall,
and F-score of both datasets were calculated by using the following formulas.

Accuracy =
TP + TN

TP + FP + TN + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F− Score = 2× Precision× Recall
Precision + Recall

(20)

(a) (b)

(c) (d)

Figure 8. Training and validation loss. (a) BiLSTM loss; (b) BiGRU loss; (c) BiGRNN loss; (d)
AFED loss.
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Table 5. Overall results of both datasets for all models over the given hyperparameters.

Models
UMC Dataset UDC Dataset

Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score

BiLSTM 91.6% 88.4% 86.4% 89.4% 95.4% 91.7% 92.3% 91.3%

BiGRU 92.5% 90.4% 89.9% 91.5% 95.7% 94.1% 93.5% 94.6%

BiGRRN 91.8% 87.8% 88.3% 88.7% 94.7% 91.8% 92.6% 92.1%

AFED 94.3% 91.7% 91.4% 92.6% 96.3% 95.2% 94.9% 95.1%

The evaluated results show that the generation of multiple word embeddings and the
formation of edit trees incorporated a lot of word-lemma information, which results in better
outcomes. The use of the AFED model is computationally less expensive and provides
higher accuracy. When comparing two recently acknowledged models, Lemming [26]
and Morfette [27], which use seq2seq and neural networking models, there is an option in
Lemming and Morfette to provide an exhaustive set of root words that are used to exploit
the dictionary features, i.e., to verify if a candidate lemma is a valid form or not. In contrast,
the generation of edit trees and finding the applicable edit tree makes things easier without
exploiting any external dictionary. Another neural network model Morpheus [28] performs
lemmatization on the UDU dataset with an accuracy of 95.2% whereas the accuracies
of the proposed model using BiLSTM, BiGRU, BiGRNN, and AFED are 95.4%, 95.7%,
94.7%, and 96.3%, respectively. Context-sensitive lemmatization by Chakrabarty et al. [29]
perform BiLSTM and BiGRU on Bengali, Hindi, Latin, and Spanish languages, and the
highest reported accuracy was 86.74% given by BiGRU on the Spanish corpus, whereas the
developed model’s average accuracy is above 91% for all models.

The literature shows that the stop words were removed from the corpora while lemma-
tization of the Urdu language in almost all the models in existing studies. The proposed
model overall dealt with around 344 stop words during the lemmatization of the UDU
corpus and UMC corpus and successfully lemmatized them (see Appendix A). The results
show that diacritized Urdu words were successfully lemmatized according to the context
of the sentence. Table 6 shows the diacritized Urdu text and its lemmatized result.

Table 6. Example of lemmatized diacritized Urdu corpus.

Words Lemma

úÍA
�
ÖÞ

�
�
� (Northern) ÈAÖÞ

�
� (North)

àñJ
�
K�ñk� (Hills) ú

�
Gñk� (Hill)

àðPA
�
�

��.

�
@ (Waterfalls) PA

�
��.

�
@ (Waterfall)

The literature shows that during lemmatization, proper nouns were also lemmatized
which changes the meaning and context of the actual word. The proposed model deals with
the detection of proper nouns with the generation of semantic embeddings and lemmatizes
accordingly if required. Consider, for example, the sentence:

ù


�J» É�Ag Q�. Ö

	
ß �úÎ«@ á�Ó

�
HA

	
KAj

�
JÓ@ ú




	
G A�PAK� Pð@ úÎ« , ÉÇ øQK�

(Pari Gul, Ali, and Parsa achieved good marks in the exams.)

The proposed model identifies ÉÇ øQK� -/Pari Gul and A�PAK� -/ Parsa as proper noun,

as they are names of persons, and do not lemmatize them to �PAK� -/Paras or ÉÇ -/Gul.

Similarly, úÎ« -/Ali and �úÎ«@ -/aala/(supreme) resembles syntactically but due to semantic

embeddings, the proposed model will recognize úÎ« -/Ali as a noun. Furthermore, loan
words are successfully lemmatized using bidirectional neural network models. Table 7
shows successfully lemmatized loan words available in the Urdu Language.
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Table 7. Lemmas of loan words in the Urdu language.

Words Loan Language In Urdu Lemma

All ambulances English á��
	
�JËñJ. Öß @ ÐAÖ

�
ß �

	
�JËñJ. Öß @

Am’dad Turkish X@YÓ@ XYÓ

Bad’tareen Turkish 	áKQ
�
K YK. Q

�
K YK.

Ayaat Arabic �
HAK

�
@

�
IK

�
@

The gated neural network models successfully deal with the lemmatization of the
complex inflectional and derivational affixes and other words for the Urdu language.
Lemmatization of inflectional words means that the lemma and the original word both
belong to a similar category, whereas derivational lemmatization deals with the lemmati-
zation of words whose lemma does not belong to their category. A few examples of the
lemmatized inflectional and derivational words are shown in Table 8.

Table 8. A few examples of lemmatized inflectional and derivational words.

Inflectional Urdu Words Derivational Urdu Words

Words Lemma Word Lemma

�
HA�QK. (N) �QK. (N) øXAK.

�
@ (N) XAK.

�
@ (Adj)

ú
�
æKAÔg (N) �

IKAÔg (N) P@XAJk (Adj) AJk (N)

í
f
ÓA

	
K

	
Êg (N) 	

Êg (N) P@XPA
	

g (N) PA
	

g (Adj)

Details of all cosine similarities based on baseline models are shown in Table 9. The best
accuracy percentage in Lemming and Morfette for 20 languages was 94.3% and the pro-
posed model beats the simple cosine similarity by a 2% margin. Morpheus provides
the best accuracy of 94.15% on the UDU dataset, while the proposed neural networking
models beat their simple cosine similarity by 1.8%. Similarly, NLP cube [25] deals with
almost 73 datasets and for Urdu lemmatization, the best accuracy score is 86.85%, which
is outperformed by the proposed model by a simple cosine similarity of around 9.5%.
Context-Sensitive NL [29] works on four languages, Hindi, Bengali, Spanish, and Latin,
and its baseline model gives a maximum lemmatization accuracy of 87.19% in the Hindi
Language, which is outperformed by the proposed model by a simple cosine similarity of
around 9.1%.

Table 9. Comparison of cosine similarities of the proposed model with baseline models.

Baseline Model Accuracy Percentage Improvement

Lemming + Morfette—94.3% [26] 2.0%

Morpheus—94.15% [28] 1.8%

NLP Cube—86.85% [25] 9.5%

Context-Sensitive NL—87.19% [29] 9.1%

6. Conclusions

In this work, a supervised neural-network-model approach is proposed for the devel-
opment of an Urdu lemmatizer. Two Urdu datasets are preprocessed by going through
several preprocessing steps. Lemmatization of both datasets is done using the RNN models.
The merger of sequence-to-sequence models is used for the creation of the lemma of the
Urdu dialect. Semantic and syntactic embeddings are created using the CBOW–Word2Vec
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model and edit trees. BiLSTM, BiGRU, BiGRNN, and AFED models are trained under
specified hyperparameters and the results of all these models are evaluated using accuracy,
precision, recall, and F-score. The results show that the proposed model has the capabil-
ities to deal with many lacking areas of Urdu lemmatization, discussed in the literature,
such as handling the loan words, stop words, noun identification, and Urdu words with
diacritics. Lemmatization of inflectional and derivational Urdu morphological words is
also successfully handled by the proposed model. The incorporation of the AFED model
improved the system’s performance remarkably by achieving an accuracy, precision, recall,
and F-score of 0.96, 0.95, 0.95, and 0.95, respectively. The proposed model outperforms
existing lemmatization models and improved the cosine similarity significantly. In future,
we plan to apply modern deep learning architectures such as the transformer to further
improve the performance of our lemmatization approach for the Urdu language.
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Appendix A. Included Stop Words

úæîE. @ -/abhi/(now), H� @ -/ap, A
	
JK� @ -/apna/(own), ú

	
æK� @ -/apni/(own), ú




	
æK� @ -/apnay/(own),

úæ
.

	
Jk. @ -/ajnabi/(stranger), Q�

�» @ -/aksar/(often), QÃ @ -/agar/(if), í
f
k� QÃ @ -/agarcha/(although),

ú


ÎÇ @ -/aglay/(next), 	P @ -/iz, �@ -/iss/(this), úæ�@ -/issi, ú



æ�@ -/issay/(it), ÈAÒª

�
J�@ -/istimal/(use),

í
f
�
JJ. Ë @ -/albata/(however), 	

Ë@ -/alif, 	
à@ -/in, PY

	
K @ -/andar/(inside), àñî

f

	
E @ -/unhon/(they), ùî

f

	
E @

-/unhi/(their), á�î
f

	
E @ -/unhain/(them), Pð@ -/aur/(and), QK�ð@ -/upper/(up), A��@ -/aisa/(such),

úæ��@ -/aisi/(such), ú


æ��@ -/aisay/(such), ¹K@ -/aik/(one), ø



@ -/ay/(oh),

�
@ -/aa/(come), ù


K
�
@

-/ai/(came), á�

K
�
@ -/aain/(come), ù





K
�
@ -/aye/(came), A

�
K
�
@ -/aata/(coming), ú

�
G
�
@ -/aati/(coming),

ú



�
G
�
@ -/aatay/(coming), øQ

	
k

�
@ -/akhri/(last), �

�
@ -/aas/(hope), A

	
K
�
@ -/aana/(coming), ú

	
G
�
@ -

/aani/(to come), ú



	
G
�
@ -/aanay/(to come), H�

�
@ -/aap/(you), AK

�
@ -/aya/(came), PAK. -/bar/(time),

ø



PAK. -/baaray/(about), Xñk. ðAK. -/bawajood/(even so), Qï
f
AK. -/bahar/(outside), Qï

f
A

	
¢�.

-/bezahir/(apparently), YªK. -/baad/(after), 	
�ªK. -/ba’az/(some), Q�

	
ªK. -/beghair/(without),

í
f
ºÊK. -/balkay/(rather), 	áK. -/ban/(become), A

	
JK. -/bana/(made), 

ðA
	
JK. -/banao/(make it),

Y
	
JK. -/band/(closed), A

	
J
	
�K. -/ban’na/(to be), QîE. -/bhar/(full), áKQîE. -/bharain/(fill up), úæîE.

-/bhi/(too), �
Iî

f
E. -/bohat/(very), ��K. -/bees/(twenty), ú



G
.

-/bay, ø �QK. -/bari/(big), �AK� -

/paas/(near), AKAK� -/paya/(found), QK� -/per/(on), øPñK� -/puri/(whole), QîE� -/phir/(then),

Cî
f
E� -/pehla/(first), ú



Îî
f
E� -/pehlay/(first), ú



æêj� JK� -/peechay/(behind), A

�
K -/taa, í

f
» A

�
K -/ta’akay/

(so that), I.
�
K -/tab/(then), êm.

�
�
' -/tujh/(you), ú



æêm.

�
�
' -/tujhay/(you), �

Im�
�
' -/tahat/(under), Q

�
K -

/tar, Õç
�
' -/tum/(you), ÐAÖ

�
ß -/tamam/(all), @PAî

f
Ö
�
ß -/tumhara/(yours), øPAî

f
Ö
�
ß -/tumhari/(yours),

ø



PAî
f
Ö
�
ß -/tumharay/(yours), á�î

f
Ö
�
ß -/tumhain/(you), ñ

�
K -/to/(so), ¹

�
K -/tak/(up to), Aî

�
E -

/tha/(was), úæî
�
E -/thi/(was), á�î

�
E -/theen/(were), ú



æî

�
E -/thay/(were), øQ�

�
K -/teri/(yours),

Ag. -/jaa/(go), 
ðAg. -/jao/(go), á�


KAg. -/jaeen/(go), ù





KAg. -/jaye/(go), A

�
KAg. -/jata/(goes),

ú
�
GAg. -/jati/(goes), ú




�
GAg. -/jaatay/(goes), ú

	
GAg. -/jaani/(will go), ú




	
GAg. -/janay/(to go), I. k.

-/jab/(when), í
f
ºJ.k. -/jabkay/(while), �k. -/jis/(which), 	ák. -/jin/(those), àñî

f

	
Dk. -/jinho/

(those who), á�î
f

	
Dk. -/jinhain/(whom), ñk. -/jo/(which), í

f
Âk. -/jagha/(place), àAî

f
k. -/jahan/

(where), A��k. -/jaisa/(like), àñ��k. -/jaison/(like), úæ�Jk. -/jaisi/(like), ú


æ�Jk. -/jaisay/(like),

ú¾k� -/chaki/(mill), í
f
º

	
Kñk� -/chaunkay/(because), ú





æï

f
Ag� -/chahiye/(should), ú




�
æï

f
Ag� -

/chahtay/(want), ú




æJï

f
Ag� -/chahiye/(should), ù



ï
f
Ag� -/chahay/(whether), É�Ag -/haasil/(get),

í
f
º

	
KBAg

-/halankay/(although), àBAg -/halan, í
f
�k -/hisa/(share), úÍA

	
g -/khaali/(empty), Õ

�
æ

	
k -

/khatam/(finish),
	

¬C
	

g -/khalaf/(against), Xñ
	

k -/khud/(self), 	
àAJÓPX -/darmiyan/(between),

�Q�
��X -/dastaras/(reach), úæ

�
�m�

Ì'X -/dilchaspi/(interest), á�

KAê»X -/dikhain/(show), ðX -

/dau/(give), è
f
PAK. ðX -/dobara/(again), 	

à@PðX -/dauraan/(during), @Qå�ðX -/dusra/(second),

àðQå�ðX -/dusroon/(others), øQå�ðX -/dusri/(second), ø



Qå�ðX -/dusray/(second), àñ
	
KðX -

/dono/(both), àðX -/dun/(give), øX -/di/(gave), ú




æKX -/diyay/(gave), AKX -/dia/(gave),

A
�
JKX -/dayta/(gives), ú

�
æKX -/dayti/(gives), ú




�
æKX -/daytay/(give), QKX -/dair/(late), A

	
JKX -

/dunya/(world), ú
	

æKX -/dayni/(to give), ú



	
æKX -/daynay/(to give), ñêºKX -/dekho/(look),

áKX -/dian/(give), ù


KX -/diay/(gave), ø



X -/day/(give), ù



ªKP

	
X -/ziryay/(through), B@

�
X -

/daala/(put), úÍ@
�
X -/daali/(put), ú



Í@

�
X -/daalay/(put), A

	
JË @

�
X -/daalna/(to put), ú

	
æË @

�
X -/daalni/
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(to put), ú



	
æË @

�
X -/daalnay/(to put), á�Ë@

�
X -/daalain/( put), Aê»P -/rakha/(kept), A

�
Jê»P -/rakhta/

(keeps), ú
�
æê»P -/rakhti/(keeps), ú




�
æê»P -/rakhtay/(keep), A

	
Jê»P -/rakhna/(to put), ú

	
æê»P -

/rakhni/(to keep), ú



	
æê»P -/rakhnay/(keep), ñê»P -/rakho/(keep), úæê»P -/rakhi/(kept),

ú


æê»P -/rakhay/(keep), è

f
P -/reh/(stay), Aï

f
P -/raha/(stayed), A

�
Jï
f
P -/rehta/(lived), ú

�
æï

f
P -

/rehti/(lived), ú



�
æï

f
P -/rehtay/(live), A

	
Jï
f
P -/rehna/(live in), ú

	
æï

f
P -/rehni, ú




	
æï

f
P -/rehnay/(stay),

ñï
f
P -/raho/(stay), ùï

f
P -/rahi/(stayed), á�ï

f
P -/rahain/(stay), ù



ï
f
P -/rahay/(stay), è

f
XAK 	P -

/ziada/(more), A� -/saa, î
�
EA� -/saath/(with), ú




	
æÓA� -/saamnay/(in front), I. � -/sab/(all),

ñ� -/sau/(sleep), A¾� -/saka/(could), A
�
Jº� -/sakta/(can), ú




�
æº� -/saktay/(can), úæ� -/si,

ú


æ� -/say/(from), 	

àA
�

� -/shan/(glory), YKA
�

� -/shaid/(probably),
	

¬Qå� -/sirf/(only), �
HPñ�

-/surat/(case), �
HPðQå

	
� -/zarorat/(need), øPðQå

	
� -/zarori/(necessary), hQ£ -/tarha/(like),

	
¬Q£ -/taraf/(side), Pñ£ -/taur/(as), è

f
ðC« -/ilawa/(except), 	á�« -/ain/(exactly), Q�

	
« -

/ghair/(non), ú
	
¯A¿ -/kaafi/(enough), I. » -/kab/(when), úæîD

.
» -/kabhi/(ever), êm�

» -/kuch/

(some), Q» -/kar/(do), A
�
KQ» -/karta/(does), ú

�
GQ» -/karti/(does), ú




�
GQ» -/kartay/(do), A

	
KQ» -

/karna/(to do), ú



	
GQ» -/karnay/(to do), ðQ» -/karo/(do), áKQ» -/karain/(do), ø



Q» -/karay/(do

it), �» -/kiss/(who), úæ�» -/kisi/(someone), ú


æ�» -/kisay/(to whom), ù


Kñ» -/koi/(someone),

	
àñ» -/kon/(who), A�

	
�ñ» -/konsa/(which one), AJ» -/kiya/(what), ú



æ�J» -/kaisay/(how),

í
f
º

	
KñJ» -/kyonkay/(because), àñJ» -/kyun/(why), ú



æ» -/kiye/(done), ú





æ» -/kiye/(did), Aî

f
»

-/kaha/(said), àAî
f
» -/kahan/(where), íî

f
» -/keh/(say), á�î

f
» -/kaheen/(somewhere), ù



î
f
»

-/kahay/(say), ú


» -/kay, ú» -/ki/(they), A¿ -/ka, ñ» -/ko, Õ» -/kum/(less), í

f
» -/kay/(that),

I. KQ
�
¯ -/kareeb/(near), AÇ -/ga/(will), úÃ -/gi/(will), ú



Ã -/gay/(will), AKñÃ -/goya/(therefore),

ú

æÃ -/gai/(she went), AJÃ -/geya/(he went), ú





æÃ -/gaye/(they went), í

f
�
J

�
� 	QÃ -/guzishta/

(previous), B -/la, ù

KB -/lai/(brought), ù





KB -/laye/(brought), A

�
KB -/lata/(bring), ú

�
GB -

/lati/(bring), ú



�
GB -/latay/(bring), A

	
KB -/lana/(to bring), ú

	
GB -/lani, ú




	
GB -/lanay/(to bring),

AKB -/laya/(brought), ñË -/Lo/(take), ÁË -/lug, AÆË -/laga/(felt), A
�
JÂË -/lagta/(it seems),

úÆË -/lagi/(got), á�ÂË -/lagain/(start), ú


ÆË -/lagay/(felt), @

	
Yì
f
Û -/lehaza/(therefore), ú





æË

-/liye/(for), úÍ -/li/(took), AJË -/liya/(took), A
�
JJË -/leta/(take), ú

�
æJË -/leti/(takes), ú




�
æJË -

/laytay/(take), 	áºJË -/laikin/(but), á�Ë -/lain/(take), ú


æË -/liye/(took), ú



Í -/lay/(take), êm.

× -

/mujh/(me), ú


æêm.

× -/mujhay/(me), YK 	QÓ -/mazeed/(more), ú


ÎK. A

�
®Ó -/muqabalay/(competitions),

ÉÓ -/mil/(get, meet), ÉÒºÓ -/mukamal/(complete), QÂÓ -/magar/(but), @Q�Ó -/mera/(mine),

øQ�Ó -/meri/(mine), ø



Q�Ó -/meray/(my), �
�K. A¢Ó -/mutabik/

(according to), á�Ó -/main/(I), A
	
K -/na/(no), í

f
	
K -/na/(no), á�î

f

	
E -/nahi/(no), ú



j
�

J
	
K -/neechay/

(below), ú



	
G -/nay/(by), àAï

f
-/haan/(yes), Qï

f
-/her/(all), Ñï

f
-/hum/(we), @PAÒï

f
-/humara/(ours),

øPAÒï
f

-/humari/(ours), ø



PAÒï
f

-/humaray/(ours), í
f

�
��Òï

f
-/humesha/(always), A

�
Kñï

f
-/hota/(

would have), ú
�
Gñï

f
-/hoti/( would have), ú




�
Gñï

f
-/hotay/( would have), á�

�
Kñï

f
-/hoteen/(would

have been), A
	
Kñï

f
-/hona/(to be), @ñï

f
-/hua/(happened), ù





Kñï

f
-/huay/(happened), á�


Kñï

f
-

/hueen/(happened), ù

Kñï

f
-/hui/(happened), ñï

f
-/ho/(be), á�ï

f
-/hain/(are), ùï

f
-/he, àñï

f

-/hoon/(am), ú



	
Gñï

f
-/honay/(to be), ú

	
Gñï

f
-/honi/(to be), ú



Æ

	
Kñï

f
-/hongay/(will be), á�î

f
E

-/yahin/(here), ùî
f
E -/yahi/(this), àAî

f
E -/yahan/(here), í

f
K -/yay/(this), A

	
JJ

�
®K -/yaqeenan/

(indeed), ú
	

æªK -/yaani/(meaning), �
HAK -/yaat, AK -/ya/(or), ù



ï
f
-/hai/(is), á�ï

f
-/hain/(are), ùï

f
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-/he, àñï
f
-/hoon/(am), ú




	
Gñï

f
-/honay/(to be), ú

	
Gñï

f
-/honi/(to be), ú



Æ

	
Kñï

f
-/hongay/(will be),

ùª
�
¯@ð -/waqai/(really), B@ð -/wala/(about to), àñË@ð -/walon/(those), úÍ@ð -/wali/(about to),

ú


Í@ð -/walay/(the ones), í

f
k. ð -/wajah/(reason), è

f
Q�

	
«ð -/waghaira/(etc.), è

f
ð -/woh/(they),

àAï
f
ð -/wahan/(there), ùï

f
ð -/wohi/(the same), á�ï

f
ð -/wahin/(right there), øð -/vi, ú



æ��ð

-/waisay/(by the way)
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