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Abstract: White blood cell (WBC) type classification is a task of significant importance for diagnosis
using microscopic images of WBC, which develop immunity to fight against infections and foreign
substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially
represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated
performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies
consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid
feature set of selective features and synthetic minority oversampling technique-based resampling to
mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are
adopted for being less computationally complex, requiring less data for training, and providing robust
results. Experiments are performed using both machine- and deep learning models for performance
comparison using the original dataset, augmented dataset, and oversampled dataset to analyze
the performances of the models. The results suggest that a hybrid feature set of both texture and
RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with
random forest. Performance appraisal using k-fold cross-validation and comparison with existing
state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the
obtained accuracy and computational complexity.

Keywords: white blood cells classification; leukemia; texture features; Chi-squared; SMOTE

1. Introduction

White blood cells (WBC) are potent infection fighters; they normally grow and divide
in an orderly way regarding the needs of the human body to fight infections and other
diseases [1]. However, in people with leukemia, the bone marrow produces an excessive
amount of abnormal WBCs that do not function properly, and this leads to several ab-
normalities [2,3]. The counts of WBCs in blood cells can provide early clues of different
probable abnormalities concerning the number of cells of different types of WBC. The WBCs
can be categorized into five major classes: lymphocytes, eosinophils, neutrophils, basophils,
and monocytes. The percentage of each type of WBC in a healthy person varies within a
range. For example, lymphocytes are 20% to 40%, eosinophils account for 1% to 6%, and
monocytes make 2% to 10%, while neutrophils are 40% to 80% [4]. A lower count of WBC
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can cause blood cancer and many other diseases, as WBC contributes as an important part
of the body’s immune system. The number of WBCs varies when the bone marrow stops
making them, or when WBC are destroyed by another entity [4]. Healthy WBCs play an
important role in preventing different infections and helping to fight other deadly diseases
such as COVID-19 [5].

Estimating the WBC can help with making an early prediction of probable diseases.
Blood microscopic images can be used to detect the WBC type and the timely diagnosis of
the disease. Traditional approaches for WBC-type detection are time-consuming and low
in accuracy, which increases the importance of accurate systems for the fast and accurate
analysis of WBC. In this regard, the machine learning approach plays an important role.
Several machine learning approaches are introduced recently, which can predict the type of
WBC using microscopic images. These include the study [6] using convolutional neural
networks (CNN) and an extreme learning machine (ELM) for WBC type detection using
microscopic images. CNN with traditional deep learning approaches and handcrafted
features for WBC is deployed by the study [7].

This study also follows a machine learning-based approach for WBC type detec-
tion using blood microscopic images. We used a WBC image dataset acquired from the
IEEE data port, which has imbalanced class distribution and a poor feature set. We pro-
posed a novel approach by combining a data re-sampling technique and a hybrid feature
engineering technique to alleviate the influence of such shortcomings and to make the
following contributions.

• An improved feature set is obtained by combining the texture features and RGB
features to make a more correlated feature set with target classes to obtain a high
accuracy. Later, Chi-squared (Chi2) is used to select an important and equal number
of features for the models’ training. The models are evaluated using texture features
and RGB features, in comparison to the proposed hybrid features.

• The imbalanced distribution of different classes of WBC is tackled using data resam-
pling, which helps to reduce the model over-fitting. The synthetic minority oversam-
pling technique (SMOTE) is applied for data resampling in this study for evaluating
the influence of data resampling on the performance of machine learning models.

• Besides using various machine learning models such as decision tree (DT), random
forest (RF), k-nearest neighbor (KNN), and support vector machine (SVM), state-of-
the-art pre-trained deep learning models are also employed, including ResNet50 and
VVG16. In addition, a custom-designed CNN is also used. Experiments are performed
using the original dataset, augmented dataset, and oversampled dataset.

• The performances of all models is analyzed regarding different performance evalua-
tion metrics. Furthermore, k-fold cross-validation and statistical T-tests are carried out.
Additionally, the performance comparison with recent state-of-the-art approaches is
made to analyze the performance of the proposed approach regarding accuracy and
response time.

This paper is further divided into three sections. Section 2 discusses several important
studies in the context of WBC-type detection. The proposed feature engineering approach
and the processes of WBC-type classification are explained in Section 3. Section 4 presents
the results and discussion, while the conclusions are provided in Section 5.

2. Related Work

Research on WBC is one of the most important domains in bioinformatics, while the
use of machine learning models for WBC has also been regarded as potentially
significant [8–10]. The classification of WBC using microscopic images has been investi-
gated by several researchers [6,7,11]. Despite that, several challenges remain unresolved,
such as the pure WBC image dataset, the high accuracy machine learning approach, the
efficiency and reduction in computational time, etc. In the following, several prominent
research works are discussed.
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The authors propose a deep learning-based automatic approach for WBC classifica-
tion in [9]. The study utilizes pre- and post-preprocessing to improve the performance of
the CNN model. In preprocessing, data normalization, filled holes, and data augmenta-
tion are applied, while in post-preprocessing, the study deployed localization and data
segmentation techniques. The study achieved a 95.73% accuracy score using the CNN
model on the cytological images dataset. The study [12] used the CNN model and recur-
rent neural network (RNN), as well as, a combination of both CNN and RNN for WBC
classification to resolve the multiple cells overlap problem. The Canonical Correlation
Analysis method is used in the study with the BCCD dataset. The achieved accuracy score
is 95%. The study [13] proposed a 3D convolutional network, called deep hyper, for WBC
microscopic image classification. Spectral and spatial features are used with a deep hyper
model to obtain 96% accuracy. Using the deep hyper model with an attention module
resulted in a 97% accuracy score.

The study [14] used a hybrid approach for WBC detection, in which the scale-invariant
feature transform (SIFT) and CNN model are combined. SIFT is used for feature detection,
which is used for CNN training using the LISC and WBCis datasets. The proposed model
achieved 95.84% and 97.33% accuracy scores, respectively, for both datasets. Similarly,
the study [15] proposed an approach for the classification of WBC using the CNN model.
They deployed the proposed approach on the Kaggle WBC images dataset and achieved
significant accuracy. The study [16] proposed a multi-level CNN model for the WBC
classification for four types of cell classification. At the first level, Faster R-CNN is applied
for the detection of the region of interest while at the second level, CNN-based architecture
MobileNet is used for cell-type classification.

Besides proposing novel architectures, several studies adopt pre-trained models for
WBC classification. The study [6] used a supervised machine learning approach for WBC
detection which follows a CNN architecture and ELM model on a microscopic image
dataset. Several CNN-based pre-trained models are used, such as AlexNet, GoogleNet,
VGG-16, and ResNet for feature extraction while ELM is trained on those features to obtain
a 96.03% accuracy. Similarly, [7] used deep learning CNN with handcrafted features to
achieve a higher accuracy. The study worked on six types of WBC, including lymphocytes,
monocytes, basophils, neutrophils, eosinophils, and abnormal cells. The experimental
results are promising. Along the same directions, [17] used a pre-trained CNN architecture
for WBC classification. The authors deployed ResNet and Inception variants with fine-
tuned parameters to obtain 100% training accuracy with the ResNet50 model for four
classes of WBC; however, the computational complexity of this approach is very high, as it
uses 3000 epochs for a very deep ResNet50 model. The study achieved an accuracy score of
98.4%. The study [18] used the DenseNet121 model for the classification of the WBC. Data
normalization and data augmentation are used with the optimized DenseNet121 model.
The proposed model achieved 98.84% accuracy on the KBC dataset.

Table 1 presents a comparative analysis of the cited research works. Predominantly,
the above-discussed studies on WBC classification adopt deep learning approaches where
the computational costs are higher than for machine learning models. Additionally, several
studies use a lower number of WBC classes, and the reported accuracy is high. In addition,
a few studies experimented with imbalanced datasets where the models’ over-fitting prob-
ability is high. This study resolves the problem of high computational cost by deploying
machine learning models, and aims at achieving high accuracy using feature engineering.
Using a balanced dataset, the probability of model over-fitting is also reduced.
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Table 1. Summary of literature review.

Ref. Year Approach Aim and Results Dataset

[17] 2018 Pre-trained models ResNet
and Inception

WBC detection, Achieved 99.84%
and 99.46% accuracy rates with
ResNet V1 152 and ResNet 101

WBC microscopic image
dataset [19].

[7] 2019 CNN with handcrafted features WBC detection: CNN achieved
99% accuracy

RBCs, WBCs images dataset [7].
The augmented dataset consists of
2697 cropped images in the
‘training set’ and 816 cropped
images in the ‘test set’.

[6] 2020 CNN-based models features and
ELM model

WBC detection, ELM achieved
96.03% accuracy.

BCCD dataset, Microscopic WBC
dataset consists of 12,494 images,
including 3120 eosinophils, 3108
lymphocytes, 3095 monocytes,
and 3171 neutrophils [20].

[12] 2021 Canonical Correlation Analysis
(CCA) applied to (CNN + RNN)

WBC types classification, Model
achieved 95.89% accuracy

BCCD dataset [20] and Kaggle
dataset

[13] 2021 3D CNN and 3D CNN with
attention module

WBC types classification, Model
achieved 97.72% accuracy score.

Three independent datasets with
215 patient samples.

[14] 2022 SIFT features with CNN model
WBC detection, Models achieved
LISC = 95.84% and
WBCis = 97.33% accuracies.

LISC and WBCis datasets [19].

[15] 2022 CNN model WBC types classification, Model
achieved 98.55% accuracy score. WBC Kaggle dataset [20].

[16] 2022 Multi-level CNN model WBC types classification, Model
achieved 98.4% accuracy score.

Blood Cell Detection (BCD)
dataset, Complete Blood Count
(CBC) dataset, White Blood Cells
(WBC) dataset, Kaggle Blood Cell
Images (KBC) dataset, Leukocyte
Images for Segmentation and
Classification (LISC) dataset

[18] 2022 DenseNet121 model WBC types classification, Model
achieved 98.84% accuracy score. KBC dataset

3. Materials and Methods

This study works on WBC type detection using the image dataset and machine learning
approach. In the following sections, the background on WBC, details of the dataset, and a
description of feature engineering and models are provided.

3.1. White Blood Cells

WBC are colorless cells of the human blood because they do not have any pigment.
They comprise 7000 to 8000 cells in one cubic mm of blood [4]. Their size is much larger
than the red blood cells. They can be classified into five different types, based on the shape
of the nucleus and the density of the granules in the cytoplasm. WBCs have a single large
bilobed nucleus, which distinguishes them from the other blood cells. They are formed in
the bone marrow cell and then move to the blood and lymph [4]. Types of WBC and their
brief description are provided here.

• Neutrophils make up about 62% of the total WBC. They can engulf any foreign
particles such as viruses and bacteria, and destroy them to neutralize their effects.
They are about twice the size of a red blood cell. Their nucleus contains about 2 to
5 lobes [21]. Figure 1 presents the types of WBC.

• Basophils comprise approximately less than 1% of WBCs. They are about twice the
size of a red blood cell, with a bilobed nucleus. These cells release the protein called
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heparin, which prevents blood clotting. Basophils also release another protein called
histamine, which causes inflammation. They release antibodies and antibiotics, which
protect the body from the effects of any foreign objects. Figure 1b shows the types of
basophils of WBCs Figure 1b.

• Monocytes forms approximately 3% of the total WBC. They are about two to three
times larger than red blood cells. The nucleus is an almost round to lobed shape.
It produces macrophages, which can destroy the larger particles via phagocytosis.
The life span of macrophages in the blood is about 8 to 10 h, after which they move
toward the lymphoid tissue and become a macrophage. The monocyte type of WBC is
shown in Figure 1c.

• Eosinophils comprise about 2% of the WBC. They are about twice the size of a red
blood cell, while their nucleus is bilobed. They inactivate the inflammation-producing
substance, and attack parasites and worms. Figure 1d shows the sample image of the
basophil types of WBC.

• Lymphocytes make up approximately 32% of the total WBCs (Figure 1b). Their size
is nearly equal to the red blood cell. They produce antibodies. The life span of
lymphocytes in the blood may be months and even years, depending upon the activity
of the cell. Lymphocyte samples are shown in Figure 1e.

(a) (b)

(c) (d)

(e)
Figure 1. Types of WBC. (a) Neutrophils, (b) Basophils, (c) Eosinophils, (d) Monocytes, and (e)
Lymphocytes.

Figure 2 shows the hierarchy of the WBC type according to the root types, and also
illustrates the differences in various types of WBC.
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Figure 2. Hierarchy and classification of WBCs.

3.2. Flow of Implemented Methodology

In this study, first, a dataset containing the WBC images is acquired from the IEEE data
port, which is later used to extract the features from the WBC images. We extract two types
of features, including texture features and RGB features. Texture features are extracted
using the skimage library [22]. After extracting the features, we deploy the feature selection
technique to extract the prominent and most important features using Chi2.

We select 3000 features each from the RGB and texture features. Both types of impor-
tant features (RGB and texture) are combined to form a hybrid feature set. For resolving
the problems related to the imbalanced dataset, we performed data oversampling using
SMOTE, which helps to reduce the model over-fitting towards the majority class. Several
machine learning and deep learning models are deployed to perform WBC-type classifica-
tion. To train and test the learning models, we split the dataset into training and testing
sets with 0.8 to 0.2 ratios for training and testing, respectively. In the end, we evaluate all
models in terms of accuracy, precision, recall, and F1 score. Figure 3 shows the proposed
methodology of this study.

Figure 3. Flow of the proposed methodology.

3.3. WBC Dataset

The dataset that is used in this study comprises five categories of WBCs, including
neutrophil lymphocyte, monocyte, eosinophil, and basophil. The dataset is acquired
from the IEEE Dataport [23]. Each type of WBC consists of a different number of images,
as shown in Table 2. The total number of images in the dataset is 3539, with 667 raw images,
1464 augmented images, and 1408 cropped and classified images.
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Table 2. Sample count in the original dataset.

WBC Type Original Augmented

Neutrophil 319 194

Lymphocyte 905 -

Monocyte 82 418

Eosinophil 82 405

Basophil 20 447

3.4. Feature Engineering

For feature engineering, we deployed feature extraction and feature selection tech-
niques to generate an important feature set that can enhance the performance of learning
models. We extracted two types of features from the dataset, which are RGB features
and texture features, because color and shape are the best parameters for classifying the
WBC images.

3.4.1. RGB Features

Color is an important part of the image, and is widely used in image processing.
The color information is conveyed through three channels, and these color features are
invariant to the rotation of the pixels in an image. The red, blue, and green pixel values
represent the content in the image, and can be used for the training of machine learning
models [24]. These RGB features are very feasible, as color can potentially be used to
discriminate between images of the different target classes.

3.4.2. Texture Features

Texture features can be extracted from grayscaled images, disregarding the color
information [25]. Texture features provide information about the intensities of the pixels in
an image. They are characterized by the distribution of intensity levels in the neighborhood.

Both RGB and texture features have their own advantages and disadvantages, similar
to their significance toward improving the performances of machine learning models.
For RGB features, we used the CV2 library, while the texture features are obtained using the
skimage library [22]. Table 3 shows the number of features for RGB and texture features.

Table 3. Number of features with individual technique.

Feature Type No. of Features

RGB 67,500

Texture 22,500

We combined both features vertically and generated a hybrid feature set. Before com-
bining the features, we performed feature selection and extracted the most important
features, which reduced the size of the hybrid feature set to improve the accuracy and
efficiency of the models. For feature selection, we used the Chi-squared (Chi2) technique.

3.4.3. Chi2

Chi2 is a feature selection technique that finds the relationship between the feature
set and the target classes [26]. It finds the dependence of the target class on each of the
data features. It assumes the null hypothesis, indicating that the feature distribution is
independent. Chi2 calculates the x2 scores and then orders them in descending order.
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The higher the value of x2, the more important the feature is. The formula to calculate the
x2 is given as (1)

x2 =
k

∑
i=1

m

∑
j=1

(Oij − Eij)
2

Eij
(1)

where Oij is the observed frequency, Eij is the expected frequency, k is the number of rows
and m is the number of columns, while (i, j) denotes the cell.

We extract 3000 features each from RGB and texture features and make a hybrid feature
set. Table 4 shows the number of features with each approach, and Figure 4 shows the
process of forming the hybrid feature set.

Table 4. Number of features.

Feature Total No. of Features Chi2

RGB 67,500 3000

Texture 22,500 3000

HF 6000

Figure 4. Process followed to make the hybrid feature set.

3.5. Synthetic Minority Oversampling Technique

SMOTE is an oversampling technique that generates artificial samples to make a
balanced dataset that can help to reduce the probability of models overfitting [27]. SMOTE
generates samples for the minority class to equal the number of majority class samples.
It is mostly used for the numeric data features, while this study uses it to increase the
number samples for the image data. Table 5 shows the ratio of samples after the over-
sampling of data. Figure 5 shows the approach for data normalizing and balancing using
the SMOTE approach.

Table 5. Sample count after over-sampling of data.

WBC Type Original Augmented Oversampled

Neutrophil 319 194 905

Lymphocyte 905 - 905

Monocyte 82 418 905

Eosinophil 82 405 905

Basophil 20 447 905
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Figure 5. Approach followed for data balance using SMOTE.

3.6. Data Splitting

Data splitting is performed to train and test the learning models. We split the dataset
with 0.8 to 0.2 ratios into cases of both oversampling and the original dataset. This ratio is
more optimal as the dataset size is not too large, so we obtain the best results with this ratio.
Table 6 shows the number of samples for training and testing with the original dataset and
the over-sampled dataset.

Table 6. Target class count in the training and testing sets.

Class
Oversampling Data

Training Set Testing Set Total

Neutrophil 709 196 905

Lymphocyte 728 177 905

Monocyte 719 186 905

Eosinophil 726 179 905

Basophil 738 167 905

Original Data

Neutrophil 249 70 319

Lymphocyte 732 173 905

Monocyte 69 13 82

Eosinophil 59 23 82

Basophil 17 3 20

3.7. Machine Learning Models

Machine learning models can be used to solve different domain problems such as text
analysis [28], computer vision application [29,30], IoT [31,32], and image processing [33,34],
etc. In this study, we used machine learning models for WBC image classification. We
deployed several machine learning models on hybrid features set to show the significance
of our feature engineering approach. Four state-of-the-art machine learning models such
as DT, RF, KNN, and SVM have been employed with their best hyper-parameters settings
according to the dataset used, as shown in Table 7.

DT is a tree-based machine learning model used for classification and regression
tasks [35,36]. DT constructs a tree using the features set, and put important features
on the root nodes, while leaf nodes function as decision nodes for the DT. The features’
importance in DT can be calculated using the Gini Index or Information Gain algorithms.
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These algorithms provide purity and impurity in the feature set. For tree split, we used the
Gini criterion [37], which can be calculated as

G =
T

∑
i=1

p(i) ∗ (1− p(i)) (2)

where T is the total number of target classes and p(i) is the probability of picking the data
point with class i.

The DT is used with max_depth parameter with value 200, which is the most optimal
value for it, because after a 200 value of max_depth, there is no change in model accuracy.
The increase in tree depth increases the complexity of the model, so we restrict it to 200-
level depth.

Table 7. Hyperparameters setting for machine learning models.

Model Hyperparameters Hyperparameters Tuning

DT max_depth = 200 max_depth = {2 to 500}

RF max_depth = 200,
n_estimators = 300

max_depth = {2 to 500},
n_estimators = {50 to 500}

KNN n_neighbors = 5 n_neighbors = {2 to 10}

SVM Kernel = poly, C = 4.0 Kernel = {poly, linear, sigmoid}
C = {1.0 to 5.0}

RF is also a tree-based model with an ensemble of several DTs. RF can be used
for classification and regression tasks. It can perform well on nonlinear and imbalanced
datasets [38]. RF combines a number of DTs under majority voting. All DTs in RF make
their prediction on the test data, and then the most predicted class by the DTs is regarded
as the final prediction by the RF. RF can be defined mathematically as

r f = mode{DT1, DT2, DT3, ..., DTn} (3)

or,

r f = mode{
n

∑
i=1

DTn} (4)

where DT1, DT2, DT3 are the decision trees and n is the number of decision trees.
We used RF with n_estimator parameters with 200 and max_depth parameters with

200 as we used in DT. The n_estimators indicate the number of DTs participating in the
prediction procedure of RF.

KNN is a simple machine learning algorithm for classification and regression. KNN,
also known as lazy leaner, uses the whole training data. It performs matching on test data
with training data, and finds the distance with the nearest target in the training data [39].
Several distance metrics can be used with KNN, while the Euclidean distance is most
commonly used:

d(i, j) =

√√√√ n

∑
p=1

(ip − jp)2 (5)

where i and j are two points in Euclidean n-space, and ip − jp shows the Euclidean vectors,
starting from the origin of the space.

KNN is used with only one parameter, which is n_neighbors with a value of 5, indicat-
ing that the model uses five neighbors to predict the class of a given sample.

SVM is a linear model used for classification and regression tasks. SVM draws multiple
hyper-planes to classify the data into several classes [40]. Hyper-plane with the best margin
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from data points will be the selected hyper-plane for the SVM. Hyper-plane can be defined
mathematically as

Z.x + b = 0 (6)

where Z is a vector normal to hyper-plane and b is an offset. We used SVM with poly kernel
and C = 4.0.

3.8. WBC Classification

Algorithm 1 illustrates the WBC classification approach used in this study. The given
input image is classified into one of the five classes. First, RGB and texture features are
extracted from all images one by one, and then concatenated vertically (axis = 1) to make a
hybrid feature set. The feature set goes through the SMOTE technique to make the dataset
balanced, which is later used to train machine learning models.

Algorithm 1: WBC classification algorithm
Input: WBC Images
Result: WBC type detection −→ (Neutrophil Lymphocyte, Monocyte, Eosinophil,

and Basophil)
initialization;
loop (Img in Images)

.... RGB←− R f (Img)

.... Txt←− Tf (Img)

.... R f .append(RGB)

.... Tf .append(Txt)
loop end
HF←− concatenate(R f , Tf axis = 1)
PFS←− SMOTE(HF)
Prediction←− MLmodel(PSF)
Scores←− Evaluation(Prediction)

4. Results

This section contains the results of machine learning and deep learning models for
WBC-type detection. We deployed DT, RF, KNN, and SVM from machine learning models
with both texture and RGB features. We used a Core i7 11th generation machine with
NVIDIA GPU to perform the experiments. The system consists of 16 RAM and 1TB SSD.
We used a Jupyter notebook and Python language to implement the approach.

4.1. Results Using the Original Dataset

Table 8 contains the results of machine learning models on the original dataset with
texture and RGB features. The results of all models are very poor on the original dataset
because the target ratio in the original dataset is highly imbalanced. All models show
the over-fitting for the majority class data. With both the RGB and texture features, the
performance of RF is better as compared to other models in terms of accuracy on the
original dataset, as it achieves 0.66 and 0.62 accuracy scores, respectively. The F1 scores of
all models are poor because of the highly imbalanced dataset. To resolve this imbalanced
dataset problem, we used data augmentation.
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Table 8. Results of machine learning modes on the original dataset.

Feature Model Accuracy Precision Recall F1

Texture

DT 0.42 0.19 0.19 0.19

RF 0.66 0.13 0.20 0.16

KNN 0.43 0.19 0.23 0.19

SVM 0.66 0.13 0.20 0.16

RGB

DT 0.49 0.22 0.22 0.22

RF 0.62 0.36 0.21 0.19

KNN 0.55 0.23 0.21 0.20

SVM 0.56 0.25 0.23 0.23

4.2. Results Using the Augmented Dataset

For data augmentation, ref. [23] used Keras preprocessing layers, where the images
are augmented to generate a larger dataset. The data augmentation influences the learning
models positively and marginally improved the accuracy. The marginal improvement is
due to the uncorrelated distribution of features during augmentation. Table 9 contains the
results of machine learning models on the augmented dataset with both the texture and
RGB features. For the augmented dataset, machine learning models with RGB features are
somehow better as compared to the texture features, as RF achieves a 0.64 accuracy score
with a 0.54 F1 score. With texture features, RF achieves a 0.35 F1 score. The reason behind
the accuracy improvement of the learning models with RGB features after augmentation
is that the WBC color is not changed after augmentation, while the texture features are
changed after flipping or rotating the image during augmentation.

Table 9. Results of models on the augmented dataset.

Feature Model Accuracy Precision Recall F1

Texture

DT 0.26 0.24 0.24 0.24

RF 0.44 0.33 0.37 0.35

KNN 0.25 0.06 0.25 0.10

SVM 0.33 0.08 0.25 0.12

RGB

DT 0.41 0.39 0.38 0.38

RF 0.64 0.63 0.57 0.54

KNN 0.40 0.29 0.34 0.31

SVM 0.44 0.41 0.41 0.41

4.3. Performance of Models on Hybrid Features

We try to improve the performance of learning models by making a balanced dataset
using the SMOTE technique. The SMOTE technique yields a highly balanced dataset,
which increases the number of samples for training and testing for machine learning
models and results in significant improvements. Table 10 shows the results of machine
learning models using the SMOTE balanced dataset. Using the balanced dataset with
SMOTE, the performances of models has been elevated, as the RF achieves the highest
accuracy score of 0.92 and the same F1 score using the texture features. SMOTE does not
impact on the texture features and the RGB features, as it generates new samples artificially
to reduce the models’ over-fitting. RF is also good with RGB features after oversampling
with SMOTE, as it achieves a 0.87 accuracy score. DT and KNN do not perform well
because KNN shows a poor performance when used with a large feature set.
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Table 10. Machine Learning Results on Over-sampled Dataset.

Feature Model Accuracy Precision Recall F1

Texture

DT 0.74 0.74 0.74 0.74

RF 0.92 0.92 0.92 0.92

KNN 0.77 0.65 0.75 0.68

SVM 0.77 0.69 0.76 0.70

RGB

DT 0.61 0.61 0.62 0.61

RF 0.87 0.87 0.87 0.87

KNN 0.70 0.69 0.70 0.69

SVM 0.81 0.81 0.81 0.81

A novel hybrid feature engineering approach is deployed with the machine learning
models to analyze their performances against the individual texture and RGB features.
The hybrid features set combines both the texture features and RGB features selected
using the Chi2 technique. In addition, SMOTE is applied to perform the oversample for
data balancing.

Table 11 shows the results of machine learning models using the hybrid feature
engineering technique. The results suggest that this approach significantly improves the
performance of all learning models, with RF being the highest accuracy-preserving model,
as it obtains an accuracy score of 0.97. The performance of RF is better, owing to its ensemble
architecture which combines 300 decision trees on the hybrid feature set to make the final
prediction. SVM also shows significant performance with the hybrid feature, as it achieves
a 0.89 accuracy score and a 0.89 F1 score. The impact of the hybrid feature set is two-fold,
where it provides a highly correlated feature set in the first place and a balanced feature set
in the second place, which improves the training process of the machine learning models
and enhances their performances. On average, the performances of all the models have
been elevated when used with the hybrid feature set.

Table 11. Results of models using the hybrid features from an oversampled dataset.

Feature Model Accuracy Precision Recall F1

HF

DT 0.73 0.73 0.73 0.73

RF 0.97 0.97 0.97 0.97

KNN 0.78 0.80 0.78 0.72

SVM 0.89 0.89 0.89 0.89

A performance comparison of all machine learning models used in this study is
illustrated in Figure 6, using different types of features such as original texture and RGB
features, augmented texture and RGB features, and hybrid features. It shows that the best
performance of the models is obtained when trained on oversampled hybrid features, with
RF as the best performer. Figure 7 show the confusion matrix for the best performer RF
using machine learning models.
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Figure 6. Comparison between all machine learning approaches used for classification of WBC types.

Figure 7. RF confusion matrix using HB features.

Figure 8 shows the comparison of different features, including RGB features, texture
features, and hybrid features. It is helpful in understanding the performance of machine
learning models when trained on different feature sets. Figure 8a shows the feature space
of RGB features, indicating that the distribution of samples of various classes is not well
separable, which explains why the performance of machine learning models is not good
when using RGB features. The same is true for texture features where samples of different
WBC types are mixed, as shown in Figure 8b. However, the feature space of hybrid features
on oversampled data, as given in Figure 8c, shows that the sample distribution of WBC
types is more separable and distinguishable as compared to both texture and RGB features,
which leads to a better performance of the machine learning models.
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(a)

(b)

(c)

(d)
Figure 8. Comparison of original features space and proposed features space. We visualize features
in 3D space and show that the features set makes a good correlation with target classes or not. If there
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will be less overlapping in different target samples, this means that the feature set is good for
achieving significant results. We used PCA to convert our features into 3 dimensions, and then
illustrated them using a scatter plot. (a) Original dataset RGB features, (b) Original dataset texture
features, (c) Hybrid features space at 0◦, and (d) Hybrid features space at 90◦.

4.4. Performance Analysis of State-of-the-Art Deep Learning Models

We deployed several deep learning models in comparison with the proposed approach.
For this purpose, CNN, VVG16, and ResNet-150 are adopted for WBC-type detection.
The architectures of all models are illustrated in Figure 9. Each model consists of a dense
layer in the end, with five neurons and a Sigmoid activation function. The models are
compiled using the categorical_crossentropy loss function and an Adam optimizer [33]. All
models are fitted with 15 epochs, and 15% of the data are used for validation.

(a) (b)

(c)

Figure 9. Architecture of the state-of-the-art deep learning models. (a) CNN, (b) ResNet50 [41], and
(c) VVG16.

Figure 10 shows the training and validation loss and accuracy for the CNN and pre-
trained models. All models are fitted with 15 epochs, and the results for each epoch are
given. The loss and accuracy per epoch are illustrated with respect to the original dataset,
augmented dataset, and oversampled dataset. The figure shows that the training and
validation accuracy, and loss of CNN are better, as compared to other models.

The performance results of deep learning models are shown in Table 12. The results are
presented for three types of datasets, including the original, augmented, and oversampled
datasets. However, the handcrafted features are not used for deep learning models such as
texture or RGB features, because deep learning models work well with their own extracted
features. On the original dataset, pre-trained models are good as compared to CNN, as
VVG16 achieves a 0.74 accuracy score with a 0.30 F1 score. The performance of VVG16 is
the same in the case of the augmented dataset. In both cases, the original and augmented
dataset models are over-fitted on the majority class and show poor performance for the
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minority class, which results in a poor F1 score. The oversampling technique resolves this
issue by providing balanced samples for training, which results in a better performance of
CNN, with similar results for the accuracy and F1 score. CNN achieves an accuracy of 0.73
and an F1 score of 0.71 using the oversampled dataset.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Training and testing per epochs accuracy and loss graphs. (a) Accuracy on original
dataset, (b) Loss on original dataset, (c) Accuracy on augmented dataset, (d) Loss on augmented
dataset, (e) Accuracy on over-sampled dataset, and (f) Loss on over-sampled dataset.

Table 12. Deep learning models performances with each approach.

Sampling Model Accuracy Precision Recall F1 Score

Original

CNN 0.58 0.19 0.22 0.20

VVG16 0.74 0.29 0.31 0.30

ResNet-50 0.68 0.25 0.29 0.27

Augmention

CNN 0.58 0.19 0.22 0.20

VVG16 0.74 0.29 0.31 0.30

ResNet-50 0.68 0.25 0.29 0.27

Oversampling

CNN 0.73 0.74 0.73 0.71

VVG16 0.20 0.06 0.20 0.07

ResNet-50 0.20 0.04 0.20 0.06
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4.5. Validation of the Proposed Approach

We validate the proposed approach using the k-fold cross-validation technique. From
this point of view, a 10-fold cross-validation is applied to all of the machine learning models
used in this study with the proposed hybrid features on the oversampled dataset. The
results given in Table 13 show that the RF obtains the best performance, with a 0.95 accuracy
score and a standard deviation (SD) of ±0.03, followed by the SVM, with a 0.90 accuracy
score and ±0.02 SD, which validates the superior performance of RF with the proposed
hybrid feature set.

Table 13. Ten-fold cross-validation results of machine learning models using the proposed approach.

Model Accuracy SD

DT 0.76 ±0.03

KNN 0.79 ±0.03

RF 0.95 ±0.03

SVM 0.90 ±0.02

4.6. Best Performer Optimization Using Particle Swarm Optimization

We used the swam optimizer for hyperparameter tuning to select the best hyper-
parameters in comparison with our selected hyperparameters. For this purpose, we
used the mealpy 1.0.2 library [42,43]. We imported a particle swarm optimization (PSO)
model named BasePSO, and tuned the best performer RF with its two hyperparameters,
n_estimators and max_depth. We set upper bound and lower values at 300 and 50, re-
spectively, for both n_estimators and max_depth. We set the epochs value to 2 and the
population size to 50 for PSO. The best solution using swam optimizer achieves a 0.94
accuracy as it optimizes the n_estimators value of 273 and max_depth value of 110. Table 14
shows the PSO epoch-wise RF results. It can be observed that RF is good as compared to
other models, and the approach is good in terms of accuracy and computational cost.

Table 14. RF hyperparameters optimization using PSO.

Epoch Current Best Global Best Runtime N_estimators Max_Depth

Epoch 1 0.94 0.94 691 169 253

Epoch 2 0.94 0.94 655 273 110

Best Fitness 0.94

4.7. Performance Comparison with State-of-the-Art Approaches

The performance comparison of the proposed approach is also carried out with ex-
isting state-of-the-art approaches. We performed a fair comparison by evaluating all
approaches on the dataset that is used. We implemented the models from the selected
studies according to their base paper architecture; however, the dataset of the current
study is used. For comparison, only those studies are selected which investigate WBC-type
classification using medical image datasets. We compared the results of the current study
with [15], which proposed a CNN model for WBC classification. Similarly, the study [12]
proposed a hybrid model by combining CNN and RNN to perform WBC classification. We
selected these studies for comparison because they share the same topic. These studies
used an imbalanced medical image dataset. In addition, two additional studies [34,44]
that investigate medical image classification are also considered. For a fair comparison,
the models presented in these studies are implemented using the dataset used in this
study. Performance comparison is carried out in terms of accuracy and computation time.
Table 15 shows the performance comparison of selected studies with the current study. It
can be observed that the current study outperforms the existing studies both regarding the
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obtained accuracy and computation time, which shows the supremacy of this approach for
WBC-type classification.

Table 15. Comparison with existing state-of-the-art approaches.

Ref. Year Model Acc. T (s)

[34] 2021 CNN 46% 1244

[44] 2021 MobileNet+CNN 57% 601

[12] 2021 CNN+RNN 51% 9612

[15] 2022 CNN 72% 1109

This study 2022 RF 97% 34

4.8. Statistical T-Test

This study also performs a statistical significant T-test to show the significance of
the proposed approach [45]. We deployed a T-test on each approach in comparison with
the proposed approach and obtained results in form of acceptance or rejection of the
null hypothesis.

• Null Hypothesis (H0): if both compared results are statistically equal and there is no
significant difference in results, it accepts the null hypothesis.

• Alternative Hypothesis (Ha): if both compared results are not statistically equal and
there is a significant difference in results, it rejects the null hypothesis and accepts the
alternative hypothesis.

Table 16 shows the T-test results for all cases. The T-test gives the T score and critical
value (CV) score as outputs, and if T ≤ CV, then it accepts the null hypothesis; else it rejects
the null hypothesis. T-test rejects the null hypothesis and accepts the alternative hypothesis
in all cases when we compared the proposed approach results with other approaches
which show that the proposed approach is statistically significant in comparison with
other approaches.

Table 16. Statistically significant T-test.

Case T CV H0

HF+SMOTE V
Original 12.125 0.000 Rejected

HF+SMOTE V
Augmented 25.698 0.000 Rejected

HF+SMOTE V
Over-sampled 16.187 0.000 Rejected

5. Conclusions

White blood cells are an important part of the immune system, and they protect the
body against infections and foreign substances. WBCs consist of different types, and abnor-
malities in a type of WBC may potentially represent a disease advocating the significance
of WBC-type classification. Existing studies are limited by poor accuracy, model over-
fitting due to an imbalanced dataset, and classification for a lower number of WBC types.
From this perspective, this study presents a hybrid feature set of selective features using
Chi2- and SMOTE-based oversampling to alleviate the influence of the above-mentioned
problems. In addition, machine learning models are adopted to overcome the limitation of
the data-intensive training time of deep learning models and robust results. The experimen-
tal results indicate that the feature set of both texture and RGB features from microscopic
images selected using Chi2 produces a high accuracy of 0.97 with the RF model. Per-
formance appraisals using k-fold cross-validation, T-statistic test, and comparison with
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existing state-of-the-art studies show the supremacy of the proposed approach, both in
terms of the obtained accuracy and computational complexity. In the future, we intend to
perform further experiments using derived features from microscopic data.
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