
Citation: Mehmood, A.; Farooq, M.S.;

Naseem, A.; Rustam, F.; Villar, M.G.;

Rodríguez, C.L.; Ashraf, I.

Threatening URDU Language

Detection from Tweets Using

Machine Learning. Appl. Sci. 2022, 12,

10342. https://doi.org/10.3390/

app122010342

Academic Editors: Valentino Santucci

and Paolo Mengoni

Received: 22 September 2022

Accepted: 11 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Threatening URDU Language Detection from Tweets Using
Machine Learning
Aneela Mehmood 1, Muhammad Shoaib Farooq 1 , Ansar Naseem 1, Furqan Rustam 2 ,
Mónica Gracia Villar 3,4,5,*, Carmen Lili Rodríguez 3,6,7 and Imran Ashraf 8,*

1 Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan
2 School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland
3 Faculty of Social Science and Humanities, Universidad Europea del Atlántico, Isabel Torres 21,

39011 Santander, Spain
4 Department of Project Management, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
5 Department of Extension, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola
6 Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
7 Fundación Universitaria Internacional de Colombia, Bogotá 111311, Colombia
8 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea
* Correspondence: monica.gracia@uneatlantico.es (M.G.V.); imranashraf@ynu.ac.kr (I.A.)

Abstract: Technology’s expansion has contributed to the rise in popularity of social media platforms.
Twitter is one of the leading social media platforms that people use to share their opinions. Such
opinions, sometimes, may contain threatening text, deliberately or non-deliberately, which can be
disturbing for other users. Consequently, the detection of threatening content on social media is
an important task. Contrary to high-resource languages like English, Dutch, and others that have
several such approaches, the low-resource Urdu language does not have such a luxury. Therefore,
this study presents an intelligent threatening language detection for the Urdu language. A stacking
model is proposed that uses an extra tree (ET) classifier and Bayes theorem-based Bernoulli Naive
Bayes (BNB) as the based learners while logistic regression (LR) is employed as the meta learner.
A performance analysis is carried out by deploying a support vector classifier, ET, LR, BNB, fully
connected network, convolutional neural network, long short-term memory, and gated recurrent unit.
Experimental results indicate that the stacked model performs better than both machine learning and
deep learning models. With 74.01% accuracy, 70.84% precision, 75.65% recall, and 73.99% F1 score,
the model outperforms the existing benchmark study.

Keywords: threatening language detection; Urdu text classification; machine learning; stacking

1. Introduction

Online social networks have expanded to play a key role in our daily lives because
of the development of the Internet and communication technology. The number of social
media users doubled just from 2017 to 2021, from 2.73 billion to 4.26 billion, and is expected
to grow to 5.85 billion by 2027 [1]. According to [2], the number of Twitter users is
approximately 486 million and over 1.4 trillion tweets are posted each year. Twitter is
a social media platform for sharing short texts, called tweets, with a 280-character limit
per tweet. Twitter provides freedom of speech, and users are allowed to express their
views and opinions freely. Nonetheless, some Twitter users have manipulated information
to commit online crimes such as malware distribution and phishing [3,4]. In addition,
the controversial content raises more complex concerns, such as sexual misconduct and
self-harm incitement. Threats against victim groups, gender-based violence, and physical
violence may also be instigated [5].

Wide and unrestricted access to social media platforms like Twitter has raised serious
concerns. Cyberbullying, online racism, use of abusive language, and social misconduct

Appl. Sci. 2022, 12, 10342. https://doi.org/10.3390/app122010342 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010342
https://doi.org/10.3390/app122010342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4095-8868
https://orcid.org/0000-0001-8403-1047
https://orcid.org/0000-0002-8271-6496
https://doi.org/10.3390/app122010342
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010342?type=check_update&version=3

Appl. Sci. 2022, 12, 10342 2 of 18

have become prevalent on social media platforms. In this regard, several works are carried
out for cyber-threat detection. For example, a cascaded convolutional neural network
(CNN) is presented in [6] for the detection and classification of cyber-threats on Twitter.
Similarly, a comprehensive overview of ransomware is presented in [7]. However, to ad-
dress this issue on a larger scale on social media networks such as Twitter, more research
efforts are needed. In addition, research works on offensive text detection, cyberbullying,
and abusive language are carried out for high-resource languages like English.

Automatic threatening language detection techniques on Twitter have extended out-
side the English language as well [8,9]. Automated detection of threatening language is
studied in other languages, and particularly Bengali, German, Dutch, Italian, Indonesian,
and Arabic were the subjects of many research works [5,10,11]. To automatically identify
threatening languages, these researchers looked into linguistic expertise and resources.
Very little work is done for threatening language detection for low-resource languages
like Urdu. Amjad et al.’s work [12] is the only significant effort for automated threatening
language identification in Urdu [12]. To fill this research gap in the Urdu language, this
study endeavors to build a stacking model for threatening Urdu language detection. In this
regard, this study makes the following contributions:

• For threatening language detection, we conduct a series of experiments employing
machine learning algorithms such as the extra tree (ET) classifier, Bernoulli Naive
Bayes (BNB), support vector classifier (SVC), and logistic regression (LR). In addition,
deep learning models CNN, fully connected network (FCN), gated recurrent unit
(GRU), and long short-term memory (LSTM) are utilized.

• One of the main contributions in this study is the stacking of features for machine
learning approaches. We propose a stacked feature vector based on preprocessed
tweets and verbs extracted from preprocessed tweets. A stacking classifier is devel-
oped for threatening text detection for the Urdu language. The proposed models use
ET and BNB as the base learners while LR is used as the meta-learner.

• For machine-learning term frequency-inverse document frequency (TF-IDF) and bag
of words (BoW) are employed for the construction of features, and embedding has
been employed as feature vector deep neural networks.

• To evaluate the performance of the proposed approach, accuracy, precision, recall,
F1 score, and receiver operating curve (ROC) area under the curve (AUC) is used.
In addition, a performance comparison is carried out with the benchmark study.

The remainder of the paper is organized as follows. Section 2 describes the works
related to threatening text detection. Section 3 includes details for benchmark datasets and
proposed methodology. In Section 4, we provide analysis and discussion of results. The last
section provides the conclusion and future directions.

2. Literature Review

This section discusses existing studies for threatening language detection for the Urdu
language. To the best of the authors’ knowledge, there is only one significant study for
threatening language detection in the Urdu language. Amjad et al. [12] have contributed an
Urdu corpus b for threatening Urdu language detection. In addition, the authors performed
experiments using machine learning-based algorithms such as LR, multi-layer perceptron
(MLP), AdaBoost, and deep learning methods for the detection of threatening language.

Many existing studies focus on different languages like English, Arabic, Spanish,
and others. In the English language, many studies focused on inappropriate and abusive
language detection. For example, ref. [13] present an automatic flame detection, which
can be rants, taunts, and squalid phrases in the English language. The authors used a
multi-level classification paradigm where complement Naive Bayes (NB) is utilized. For the
second level, multinomial updatable NB is selected, while the last level chose a decision
table and NB-based hybrid classifier.

The study [14] proposed the use of lexical syntactic features for offensive language
detection on social media platforms. The study specifically focused on name-calling

Appl. Sci. 2022, 12, 10342 3 of 18

harassment by studying the user’s writing style and structure. Results demonstrate that
the proposed approach can obtain 98.24% for offensive sentence detection and performs
better than existing methods. Similarly, ref. [15] focused on detecting different kinds of
offensive content on social media platforms. The data is annotated using a three-layer
scheme. Experiments are performed using a support vector machine (SVM), bi-directional
LSTM, and CNN. A 0.80 macro F1 is reported using the CNN model.

Xiang et al. [16] proposed a semi-supervised approach for offensive language detection
on Twitter. Statistical topic modeling is used to exploit linguistic regularities for this
purpose. Results show a 75.1% true positive rate using the LR model. Similarly, hateful
and antagonistic content is identified in [17] employing the K-means algorithm. The study
focuses on text containing more than one characteristic like race and sexual orientation.
Machine learning models using the BoW approach provided an average precision of
87.83% for six classes of hateful content. Adono et al. [18] employed NB and SVM with
hateword2vec, and hatedoc2vec with n-grams for aggressive text detection from tweets.
In addition, the synthetic minority oversampling technique (SMOTE) is applied for data
oversampling. An F1 score of 42.85% is obtained using SMOTE for the testing dataset.
The study [19] uses graph convolutional networks (GCN) to obtain deep properties by
modeling follower–following relationships. Using LR with GCN, a precision of 86.23% is
obtained while recall and F1 scores are 84.73% and 85.42%, respectively.

Besides the English language, abusive content detection from other languages is also
studied by several researchers. For example, ref. [20] proposes a method to detect nasty
comments from Japanese posts from bulletin board systems. The study employs SVM with
an n-gram model and obtains a 72.25% F1 score.

The study [21] explored n-grams up to 8-grams to detect the offensive language
in English. Three systems are developed for three sub-tasks in offensive text detection.
The proposed approach achieves 79.76%, 87.91%, and 44.37% accuracy scores, respectively.

Polignano et al. [22] used ALBERTO with BERT tokens for hate speech detection in
Italian detection. The model is based on Italian language understanding and is trained with
BERT and 200M Italian tweets. Results show an average F1 score of 0.8410 for the model.

The hate speech dataset and detection system for the Turkish language are presented
in [23]. Tweets collected for experiments are from two different domains. The study
proposed BERTurk, which is a transformer architecture. Experimental results using five-
fold cross-validation indicate an accuracy of 77%. A comparative summary of the discussed
works is presented in Table 1.

The low-resource Urdu language has limited contributions regarding threatening
language detection. To our knowledge, just one previous study of the Urdu language
has been done, where Amjad et al. [12] contributed the dataset for Urdu threatening text
detection and a detection model. However, the authors just selected the preprocessed text
as a feature. Another recent study is by Mithun et al. [24], which used extreme gradient
boosting, mBERT, and dehateber-mono-arabic for threatening text detection for the Urdu
language. The best F1 score of 0.54574 is the obtained dehateber-mono-arabic model. This
study adopts the stacking of features and algorithms. In the feature selection layer, we
select two types of contents from tweets; computed features on preprocessed tweets and
extracted verbs from preprocessed tweets. Finally, on these features, the feature vectors are
computed and stacked.

Appl. Sci. 2022, 12, 10342 4 of 18

Table 1. Comparative overview of the discussed research works.

Ref. Language Features Methods Results

[12] Urdu Word, char n-grams, fastText embed-
ding

LR, MLP, AdaBoost, RF, SVM, CNN
and LSTM

Accuracy: 72.50%

[13] English Char n-grams (1–4) LR Accuracy: 96.72%

[14] English BOW, char n-grams LR, SVM, CNN Offensive sentence precision:
98.24%, offensive user preci-
sion: 77.9%

[15] English BOW, char n-grams (2,3,5) SVM, NB F1 macro: 0.80

[16] English Latent Dirichlet Allocation LR True positive rate: 75.1%

[17] English Word n-gram (3–8), char n-gram (1–
3)

CNN, RNN, NB, RF, SVM Precision: 87.83%

[18] English Hateword2ved, hatedoc2vec,
n-grams

NB, SVM F1 score: 42.85%

[19] English follower-following relationship LR+GCN 86.23%

[20] Japanese Char n-grams SVM F1 score: 72.25%

[21] English unigram Svm, BILSTM, CNN F1 score: 55.31%

[22] Italian BERT tokens ALBERTO F1 score: 84.10%

[23] Turkish BERT uncased BERTurk Accuracy: 77%

[25] English Abusive and non-abusive word list k-means -

[24] Urdu BERT XGBoost, LightGBM, mBERT,
dehateber-mono-arabic

F1 score: 54.57%

3. Materials and Methods

In this section, layered architecture for threatening and non-threatening tweets is
discussed. Figure 1 shows the four-layer architecture followed in this study. Each layer has
different functions to perform and the output of the conceding layer serves as the input of
the preceding layer.

The first layer is the input layer and is used for data acquisition. The second layer
consists of the preparation of tweets where steps like data cleaning and feature extraction
are used. The third layer implies the development of intelligent threatening tweet identifiers
where ensemble-based approaches, bagging, and stacking are discussed. The BNB and ET
are utilized for bagging. For stacking, ET and BNB are utilized as base learners while LR is
used as the meta learner. In addition, deep learning models are employed for experiments
including LSTM, GRU, CNN, and FCN. Finally, the last layer signifies the application and
deploys an automatic threatening language classifier.

3.1. Input Layer

The dataset is collected from the study [12], in which the Tweepy library was used to
collect tweets. The process of data collection begins with the collection of Urdu language
and annotation. The collected dataset comprises 3564 tweets where 1782 threatening and
1782 non-threatening tweets have been assembled. The summary of the dataset is provided
in Table 2 and sample is shown in Figure 2.

3.2. Data Preparation Layer

The collected data might contain noise and the second layer directs two tasks related
to noise removal. Firstly, the dataset has been cleaned by using different text cleaning
techniques like special character removal, white space removal, etc., as indicated in Figure 1.
Secondly, verbs have been extracted from the cleaned text. Finally, the feature vectors have
been computed using TF-IDF and BOW using word and character level n-grams.

Appl. Sci. 2022, 12, 10342 5 of 18

3.2.1. Features Extraction

Features are especially important for machine learning problems in text classification.
To conduct this study, we employed verbs as features and cleaned text features. First,
we computed features on the raw cleaned text and then from the cleaned text, verbs are
extracted as features. Lastly, these two feature vectors are combined to construct one feature
vector. This feature vector is fed to the model for training and prediction of threatening
and non-threatening tweets.

Data

Data cleaning
Feature construction

Data processing
and knowledge
discovery layer

Data
preparation

layer

Input layer

Threatening dataset [12]

Features

Preprocessod
News Verbs TFIDF, BOW with

Ngrams

Accuracy Score
F1 Score
Precision

Recall
ROC-AUC Score

Independent set
5 Fold CV

10 Fold CV
Web Server Deployed

Evaluation and
application

layer

Random Forest

Extra Trees

Bernoulli NB

Stacked Logistic Regression

Fully Connected Network

Convolutional Neural Network

Long Short Term Memory

Gated Recurrent Unit

Prediction

Special character removal
White space removal
Non-Urdu character removal

Figure 1. Workflow of the adopted methodology.

Table 2. summary stats of dataset.

Tweet Vocabulary (Words) Vocabulary (Char) Corpus

Threatening 30,518 134,408 1782

Non-threatening 31,135 140,225 1782

Total 61,653 274,633 3564

Figure 2. Examples from the dataset containing tweets from the threatening vs. non-threatening
classes.

Appl. Sci. 2022, 12, 10342 6 of 18

3.2.2. Feature Vector Approaches

For feature extraction from the preprocessed text, this study uses TF-IDF and BoW
approaches. A brief explanation of these features is provided here for completeness.

Term frequency (TF) describes how frequently a term/feature occurs. In a tweet,
a feature’s frequency corresponds to its importance. Every feature in the tweet corpus has
been transformed by term frequency into a matrix with the number of tweets in the rows
and the number of unique terms in the columns. The frequency of a feature is shown by
the number of samples that share that feature overall. The inverse document frequency
(IDF), which reduces the weight of a feature if the feature’s occurrences have distributed
among all documents, has been used to determine the weight of a feature.

BoW counts the existence of each feature in one document and in the whole corpus
and constructs the feature vector with a fixed length.

Word-based and character-based n-grams are used to extract features from the prepro-
cessed corpus that helps the model distinguish between threatening and non-threatening
tweets. In this study, we used character level n-grams ranging from unigram (n = 1) to
tetragram (n = 4). To train the model on word-level n-grams, we used unigram (n = 1) and
bigram (n = 2) approaches. This attribute is used because it provides structural details and
helps to make the text more pertinent.

3.3. Data Processing and Knowledge Discovery

Now, the feature vector attained from the data preparation layer is ready to be fed
to machine-learning classifiers. The third layer symbolizes the approaches employed
for threatening language detection using various machine-learning classifiers. In this
methodology, two ensemble-based approaches and one Bayes thorium-based approach
have been employed. Moreover, several deep learning models are also trained. A brief
explanation of each method is given in subsequent sections.

3.3.1. Extra Tree

ET is a member of the bagging family of algorithms; it functions identically to the
random forest, with two primary distinctions. As part of its training, the model receives
threatening and non-threatening tweets along with a label. With tweets of equal size in
each subset and a variety of sub-datasets based on threatening and non-threatening tweets,
the model produces several sub-datasets. Using a fixed number of split nodes, decision
trees are generated. Every model of a weak learner is given a test tweet. The class prediction
with the most votes is used to determine the test tweet.

3.3.2. Bernoulli Naive Bayes

In the BNB model, each tweet is represented by a vector x of binary values for each
feature, indicating which words in tweets appear and do not appear in the document. Each
word in tweets is also represented by a Boolean value (0 or 1), which indicates both its
presence and absence. Since the features are distinct binary variables and the number of
occurrences of the keyword in a tweet is irrelevant in BNB, Bernoulli’s method has the
advantage of displaying the absence of a word in the tweet. It has frequently been used
to classify tokens or keywords. Formally, the Bernoulli trials are expressed as [26]. Let
p(xi|wj) represent the maximum likelihood approximation that a particular token occurs
in a class and is computed as follows:

p(xi|wj) =
d f (xi, y) + 1

d(f y) + 2
(1)

where d f (x, y) represents the number of training set tweets that contain the keyword and
belong to the specified class. D f (y) is the number of class-related training dataset tweets.
Wj, +1, and +2 are smoothness Laplace parameters.

Appl. Sci. 2022, 12, 10342 7 of 18

3.3.3. Support Vector Classifier

SVC is a state-of-the-art classification algorithm used to detect threatening language
detection for the Urdu language. In this approach, SVC finds which tweets in vector form
from both classes exist on the line of the decision boundary. In SVC, many hyperplanes
are created and the optimal hyperplane is selected that maximizes the distance between
threatening and non-threatening tweets. Next, the hyperplane is selected with maximum
distance, and when a tweet is passed from test data to this hyperplane, the non-threatening
class is assigned if the predictor computes the negative number and the threatening class is
assigned if the model computes the positive number.

y = b + ω1 ∗ x1 + ω2 ∗ x2+, ..., (2)

while b is the slope, ω1 and afterward are the weights identified in the coefficient, and x1
and hereafter are the input variables.

After we have created the hyperplane, we can utilize it to generate predictions. The hy-
pothesis function h is formulated as below:

h(xi) =

{
+1 if ω.x + b ≥ 0
−1 if ω.x + b < 0

(3)

3.3.4. Logistic Regression

LR is a supervised machine-learning algorithm and comprises two parts. In the first
part, the weights are multiplied with the feature vector of threatening and non-threatening
tweets in addition to bias. After multiplication, each tweet generates a number, which is not
a probability space. To convert it into probability space, a sigmoid activation function has
been applied. The result ranges from 0 to 1, where a number greater than 0.5 is assigned to
the threatening class and less than 0.5 is assigned to the non-threatening class. Z represents
the sigmoid activation function and Y symbolizes the linear part, which comprises weights
multiplication with the feature vector.

Z =
1

1 + e−z (4)

where
Y = (w1x1 + w2x2+, ...,+wnxn + b) (5)

3.3.5. Stacking

Stacking is an ensemble technique used to improve model performance when a single
model might not perform adequately. Using the stacking method, models like ET, LR,
SVC, and BNB provide predictions for each tweet. The output of these models is used to
construct a new trainable feature vector, and the generated feature vector is provided to the
meta learner, where LR is employed as the meta learner. LR is trained on newly generated
predictions from individual classifiers and provides the final prediction. Hyper-parameters
settings for machine learning models shown in Table 3.

Table 3. Hyper-parameters list for machine learning classifiers.

Classifier Hyper-Parameter

ET N_estimators = 100, min_samples_split = 2, max_feature = ‘sqrt’

Bernoulli NB Alpha = 1.0, binarize= 0.0, fit_prior = True, class_prior = None

LR tol = 0.0001, C = 1.0,solver = ’lbfgs’

SVC C = 1.0,kernel = ’rbf’,degree = 3,gamma = ’scale’

Stacking Base_estimator = ET and BNB, final_estimator = LR

Appl. Sci. 2022, 12, 10342 8 of 18

3.3.6. Deep Learning Architectures

This part motivates explaining the architecture of deep learning models. This study
employed many neural network architectures including CNN, FCN, LSTM, and GRU.
The performance of the models is optimized, and a randomized search approach is used to
find the optimal parameters.

Each neuron in the layer before is connected to every neuron in the layer following
it in an FCN. The goal of FCN is to acquire function f , which is defined as y = f (α, x).
To obtain the best performance, the right parameters need to be applied to the input x.
Finding the optimal set of parameters enables y = f (x) mapping to provide the most
accurate estimation of f . For threatening language detection, FCN is deployed using the
architecture given in Table 4.

Table 4. Layered-wise details for a fully connected network.

Layer Weights

200 ReLU units with dense layer (46 + 1) * 200 = 9400

100 ReLU units with dense layer (200 + 1) * 100 = 20,100

50 ReLU units with dense layer (100 + 1) * 50 = 5050

20 ReLU units with dense layer (50 + 1) * 20 = 1020

Output layer with single sigmoid neuron (20 + 1) * 1 = 21

The CNN model for prediction of threatening language is composed of two convo-
max pool sections parted by a dropout layer, an embedding layer, a global average layer,
a feature extraction layer, and lastly an output layer comprised of the single sigmoid unit
as depicted in Table 5. The embedding layer is used to translate each tweet sample x
with a length of 32 to provide the X ∈ R(η × ξ) tensor. The first convo-max pool has
a filter size of three with 46 1D convolution neurons in addition to ReLU non-linearity
with 1D max pool operation. The max pooling takes an average of each of the 32 feature
mappings from previous layers, while the pooling layer flattens the output of prior layers
in a one-dimensional array of 18 values.

Table 5. Layered-wise details for CNN.

Type of Layer Weights

Embedding layer with 100 neurons 1,000,000

Con1D with 32 filters (300 + 1) * 32 = 9632

Max pooling1D 0

flatten 0

Dense = 128 (736 + 1) * 128 = 94,336

Output layer with sigmoid (128 + 1) * 1 = 129

In the LSTM model, each record was processed as a single-member sequence of 10,000-
dimensional vectors to 100 LSTM units. Two dense layers with ten (10) and one neuron,
respectively, were attached with LSTM outputs to make predictions for a two-class problem.
The first dense layer used ReLU activation while the classification layer with a single
unit used Sigmoid activation to make predictions. A dropout layer of 0.5 was introduced
between LSTM output with tanh. The LSTM model was trained on the dataset for 18 epochs.
Architectural details of LSTM are given in Table 6.

Appl. Sci. 2022, 12, 10342 9 of 18

Table 6. Layered-wise details for LSTM.

Type of Layer Weights

Embedding = 10,000 100 * (99 + 1) = 10,000

Dropout = 0.5 No weights

Dense = 10 with relu (100 + 1) * 10 = 1010

LSTM = 100 (443 + 1) * 100 = 44,400

Dense = 1 with sigmoid (output layer) (100 + 1) * 1

In the GRU model, each record was processed as a single-member sequence of 100,000-
dimensional vectors to 32 GRU units. Two dense layers with ten (10) and one neuron,
respectively, were attached with GRU outputs to make predictions for a two-class problem.
The first dense layer used ReLU activation while the classification layer with a single unit
used sigmoid activation to make predictions. A drop-out layer of 0.5 was introduced
between GRU output. GRU model was trained using 10 epochs. Details of GRU models
are given in Table 7.

Table 7. Layered-wise details for GRU.

Type of Layer Weights

Embedding = 10,000 100 * (99 + 1) = 10,000

Dropout = 0.5 nothing

Dense = 10 with relu (100 + 1) * 10 = 1010

Bidirectional = 64 (401 + 1) * 64 = 25,728

Dense = 1 with sigmoid (output layer) (10 + 1) * 1 = 11

3.4. Application and Evaluation Layer

This layer comprises the deployment of a trained classifier for threatening text de-
tection in the Urdu language. The last layer consists of evaluation metrics that have
been utilized to check the performance of classifiers using different testing techniques.
The predictor with the best results will be deployed on the web server.

4. Experiments and Results

To evaluate the performance of a threatening and non-threatening tweets predictor,
metrics such as accuracy score, precision, recall, and the ROC AUC curve are employed.
The accuracy score indicates the proportion of correctly identified threatening and non-
threatening tweets based on a comparison of all tweets. The precision specifies the predicted
positive class tweets, whereas recall describes the proportion of the total positive tweets
that are anticipated to be positive. The following equations are used for these metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2× Precision× Recall
Precision + Recall

(9)

4.1. Results Using BoW Features

Several experiments are performed to detect threatening and non-threatening tweets.
This study used word n-grams and character n-grams for features ranging from 1 to 4 n-

Appl. Sci. 2022, 12, 10342 10 of 18

grams. For features, verbs from cleaned text and preprocessed text are employed. For word
level, BoW technique results are presented with stacked features (cleaned text + verbs).

Table 8 shows the results using uni-gram features. The best accuracy of 73.10% is
achieved by stacking. Similarly, the best values for precision, recall, and F1 scores are
also from the stacking model. For bi-gram, BNB outperforms other classifiers regarding
accuracy, recall, and F1 with 73.64%, 75.97%, and 73.59%, respectively. The highest precision
of 70.47% using bi-gram is obtained by the stacking model. The highest F1 score for uni-
gram and bi-gram are 72.73 and 73.59, respectively.

Table 9 presents the results of all machine learning models using tri-gram to tetra-
gram features. It is observed that increasing the features leads to better performance.
For tri-grams, the best results are achieved with LR which has 73.08% each for accuracy
and F1 score. For tetra-gram, SVC achieves the highest accuracy of 73.36% and an F1
score of 73.31%. Figure 3 shows the AUC of machine learning models using BoW features.
ROC-ACU curve shows that the stacking model using BoW with word level produces
better results.

Table 8. Threatening language detection using uni-gram BoW features.

N-Grams Features Model Accuracy Precision Recall F1

(1,1) 9062

ET 71.40 70.10 71.98 71.40

BNB 71.87 67.48 73.97 71.81

SVC 70.32 75.52 67.31 70.32

LR 70.1 69.48 71.17 70.21

Stack 73.10 70.75 74.70 72.73

(1,2) 53,239

ET 72.43 75.14 71.28 72.41

BNB 73.64 69.16 75.97 73.59

SVC 72.32 70.34 73.43 72.17

LR 72.21 71.48 74.45 72.28

Stack 73.18 70.47 74.51 73.16

Table 9. Threatening language detection using N-gram range for BoW features.

N-Grams Features Model Accuracy Precision Recall F1

(1,3) 12,931

ET 71.87 70.47 72.5 71.86

BNB 71.21 67.30 67.29 71.18

SVC 73.08 75.71 71.94 73.06

LR 73.08 74.01 72,66 73.08

Stacking 71.30 68.79 72.44 71.29

(1,4) 48,753

ET 72.52 71.59 72.95 72.52

BNB 71.78 66.36 74.42 71.69

SVC 73.36 77.76 71.48 73.31

LR 72.82 74.39 72.10 72.80

Stacking 72.90 69.35 74.65 72.86

4.2. Experimental Results Using TF-IDF

Experiments are performed using TF-IDF features with the employed machine learning
models. Results for uni-gram and bi-gram with TF-IDF features are presented in Table 10.
Results indicate that the stacking model performs superbly with both uni-gram and bi-gram
features and obtains the highest accuracy of 73.64% and 74.01%, respectively. Stacking

Appl. Sci. 2022, 12, 10342 11 of 18

models also obtain the highest values for precision and F1 score. Results also reveal that
the performance of models with TF-IDF features is better than BoW features.

Figure 3. ROC using BoW features.

Table 10. Threatening language detection using TF-IDF features.

N-Grams Features Model Accuracy Precision Recall F1

(1,1) 9062

ET 71.40 68.97 72.50 71.38

BNB 71.87 67.48 73.98 71.81

SVC 70.93 76.45 68.86 70.85

LR 70.65 70.28 70.81 70.65

Stacking 73.64 71.40 74.75 73.63

(1,2) 53,239

ET 73.18 76.82 71.60 73.15

BNB 73.64 59.15 75.98 73.59

SVC 72.21 72.32 73.40 71.40

LR 73.12 72.12 74.02 71.04

Stacking 74.01 70.84 75.65 73.99

ROC-AUC of models with TF-IDF features is given in Figure 4. It shows that by
using bi-gram features with a stacking model, the best results are obtained for threatening
language detection.

Figure 4. ROC using TF-IDF features.

Appl. Sci. 2022, 12, 10342 12 of 18

Figure 5 shows the confusion matrix generated by a stacked-based approach using
BoW and TF-IDF features. The stacking model correctly predicts 376 threatening tweets
and 406 non-threatening tweets. Incorrect predictions are 288 for the stacking model using
BoW features. Figure 5b shows the correct and incorrect predictions when TF-IDF features
are used with the stacking approach. It correctly predicts 378 threatening tweets and 405
non-threatening tweets.

4.3. Results Using Cross-Validation

Cross-validation is another testing technique employed in this study. In independent
set testing, just one split is done. However, sometimes the split might divide the biased data
into train and test, which leads to underfitting or overfitting. To overcome this problem,
cross-validation testing has been employed. Cross-validation is robust testing, and different
folds are used for validation. In this study, testing is carried out using 5-folds and 10-folds.
Five-folds correspond to the division of data into five folds, where the first fold is used for
testing while the remaining four folds are used for training. In the next iteration, the second
fold is used for testing, while the first and last three folds are used for training. This
iteration continues until all five folds are used for testing. Finally, the average accuracy is
computed for the individual accuracy from each fold.

(a) (b)

Figure 5. Confusion matrices, (a) BoW-based results, and (b) TF-IDF-based results.

Results given in Table 11 indicate that SVC achieves the best precision and recall
scores of 78.20% each. The best accuracy is obtained by the stacking model, i.e., 73.50%,
while the highest F1 score of 73.80% is achieved by the ET classifier. ROC-AUC curve for
5-fold cross-validation is shown in Figure 6. It shows that the performance of the proposed
stacking model is superior to other machine learning models employed in this study.

Similar to 5-fold cross-validation, 10-fold cross-validation splits the data into 10 folds,
where one fold is used for testing while the remaining nine folds are used for training.
Ten iterations are needed for 10-fold cross-validation. In the end, the average accuracy is
obtained using the accuracy for the individual fold.

The results given in Table 12 show that the best performance in terms of accuracy is
provided by the proposed stacking model, which obtains 73.90% accuracy using 10-fold
cross-validation. Similarly, the best F1 score of 73.90% is also obtained by the stacking model.
On the other hand, the best precision and recall are obtained by the SVC. Figure 7 shows
the AUC-ROC curve using 10-fold cross-validation. Results indicate that the proposed
stacking model outperforms all other models with an AUC of 0.806.

Appl. Sci. 2022, 12, 10342 13 of 18

Table 11. Results of 5-fold cross-validation.

Model SVC ET Stacking BNB LR

Accuracy 71.90 73.00 73.50 72.00 71.50

Precision 78.20 73.30 72.90 68.50 75.00

Recall 78.20 73.30 72.90 68.50 75.00

F1 score 71.75 73.80 73.50 72.00 71.50

Figure 6. ROC-AUC using 5-fold cross-validation.

Table 12. Results of 10-fold cross-validation.

Model SVC ExT Stacking BNB LR

Accuracy 72.50 73.00 73.90 72.70 72.60

Precision 78.60 73.90 73.50 69.00 75.40

Recall 78.60 73.90 73.50 69.00 75.40

F1 score 72.30 73.00 73.90 72.60 72.50

Figure 7. ROC-AUC using 10-fold cross-validation.

Appl. Sci. 2022, 12, 10342 14 of 18

4.4. Results Using Deep Learning Models

This study also employs deep learning models for threatening text in the Urdu lan-
guage, which include LSTM, GRU, CNN, and FCN. The experimental results for these
models are provided in Table 13. The results suggest that the performance of deep learning
models is poor as compared to machine learning models. The best accuracy of 65.40%
is obtained by the LSTM model. Similarly, LSTM also shows the best F1 score of 65.40%
and the best recall of 67.90%. The performance of CNN is the best regarding precision,
which is 68.10% for threatening text detection. Deep learning models tend to show better
performance when trained using a large dataset. However, the dataset used in this study is
comparatively small and insufficient for deep learning models to obtain a good fit.

Table 13. Results of deep learning models.

Model LSTM GRU CNN FCN

Accuracy 65.40 65.10 65.20 53.60

Precision 62.40 61.90 68.10 51.70

Recall 67.90 67.70 65.70 55.30

F1 score 65.40 65.10 65.10 53.60

Standard deviation 0.07 0.07 0.007 0.01

ROC 0.73 0.73 0.72 0.73

Figure 8 shows the ROC-AUC curve for deep learning models. It confirms that the
performance of LSTM is superior to other models. It has an AUC of 0.7304, while GRU and
CNN perform marginally poor performance as compared to LSTM. FCN shows the worst
performance with an AUC of 0.5449 only.

Figure 9 shows the confusion matrices for deep learning models.
LSTM has 700 correct predictions with 344 correct predictions for threatening tweets

and 356 correct predictions for non-threatening tweets. FCN shows poor performance
and has only 574 correct predictions. The performance of CNN and GRU is marginally
poor than the LSTM. CNN has 698 correct predictions, 375 for threatening and 323 for
non-threatening text, while GRU has a total of 697 correct predictions.

Figure 8. ROC-AUC for deep learning models.

Appl. Sci. 2022, 12, 10342 15 of 18

(a) (b)

(c) (d)
Figure 9. Confusion matrices for deep learning models, (a) long short-term memory model, (b) fully
connected network, (c) convolutional neural network, and (d) gated recurrent unit.

4.5. Comparison with Base Study

This study uses the study from Amjad et al. [12] as the base study and uses it for
performance comparison. Similarly, another study [24] on threatening language detection
is also considered for comparison. Results given in Table 14 indicate that the proposed
approach shows better performance than the base study regarding F1 score and accuracy.

Table 14. Performance comparison with base study.

Reference Precision Recall F1 Score Accuracy

Amjad et al. [12] 72.33 73.28 72.74 72.50

Mithun et al. [24] - - 54.57 -

Proposed study 70.84 75.65 73.99 74.01

The proposed study has outperformed the best existing studies, where TF-IDF with
a stacked-based feature vector has attained better scores for precision, recall, F1-score,
and accuracy. It has obtained 70.84, 75.65, 73.99, and 74.01 scores for precision, recall, F1,
and accuracy, respectively.

The results attained from the proposed method are significant for Urdu-threatening
language detection. The attained confusion matrix consists of four quadrants as shown in
Figure 5. The employed evaluation measures precision and indicates the number of times
the model predicts Urdu threatening tweets from threatening and non-threatening tweets.
The recall corresponds to the number of times the model predicts threatening tweets from
given tweets. The F1 score consists of a combination of precision and recall. The ROC-AUC
curve states the area under the curve, and more area under the curve leads to improvement
in the model. The results demonstrate that using verbs as features helps the model obtain a
better relationship between the samples and labels, which enhances the performance of the

Appl. Sci. 2022, 12, 10342 16 of 18

models. As a result, the performance of the proposed approach is better than the base and
recent studies.

4.6. Discussion

Threatening text detection has become an important research area owing to the wide
use of social media platforms like Twitter. Often, the use of abusive, offensive, and racist
language offends different individuals, groups, and communities. Timely detection of
threatening text can reduce the chances of this event. As a result, research on offensive
and threatening text detection is carried out in different languages, particularly English,
German, Danish, Arabic, etc. Unlike these high-resource languages, low-resource languages
like Urdu do not have this luxury, and the work for threatening language detection is very
limited. Only a few works are available for threatening text detection in the Urdu language,
such as [12,24]. In this study, we enhance the performance of this task by utilizing a
benchmark dataset compiled by Amjad et al. [12].

Contrary to existing studies, which utilize the features from preprocessed text alone,
this study uses verbs from the preprocessed text as features. These features are combined
with raw features from preprocessed text to make a single feature set on which machine
learning models are trained. First, preprocessed text was converted into a feature vector,
and then, using TF-IDF and BoW, verbs were extracted from the preprocessed text and
converted into a feature vector. Besides using standalone machine learning models, a stack-
ing model is proposed that uses ET and BNB as the based learners while LR is used as
the meta learner. Moreover, deep learning models CNN, LSTM, GRU, and FCN are also
utilized. Experimental results suggest that the performance of machine learning models is
better than deep learning models. Due to small-sized datasets, deep learning models do
not obtain a good fit and thus perform poorly. The proposed stacking model outperforms
using bi-gram features with TF-IDF. It performs better than the benchmark study as well.

5. Conclusions and Future Work

Detecting threatening text detection on social media platforms is an important task and
has been widely studied recently. Predominantly, the research focused on high-resource lan-
guages like English, and Urdu, being a low-resource language, is ignored. This study aims
at providing automatic detection of threatening text in the Urdu language. Performance
is improved following two contributions, the stacking model and the use of two feature
vectors. Stacking uses ET and BNB as base learners and LR as the meta learner. Individual
feature vectors are incapable of producing better results, so we stacked the verbs feature
vector and the preprocessed feature vector to create a single feature vector. Experiments are
performed using uni-gram, bi-gram, tri-gram, and tetra-gram features using TF-IDF and
BoW. TF-IDF-based features with word-level bi-gram demonstrated the best performance
when used with the proposed stacking model. The stacking method outperformed other
methods with an F1 score of 75.65% and an accuracy of 73.99%. In the future, we intend
to increase the dataset size to improve the performance of deep learning models. We also
intend to employ embedding techniques such as Word2Vec, Doc2Vec, FastText, and BERT.

Author Contributions: Conceptualization, A.M. and M.S.F.; data curation, A.N.; formal analysis, A.M.
and C.L.R.; funding acquisition, M.G.V.; investigation, A.N. and F.R.; methodology, M.S.F.; project
administration, M.S.F., A.N. and M.G.V.; resources, M.G.V.; software, F.R. and C.L.R.; supervision,
I.A.; validation, C.L.R. and I.A.; visualization, F.R.; writing—original draft, A.M.; writing—review
and editing, I.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the European University of the Atlantic.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset is avaialble at given link: https://github.com/MaazAmjad/
Threatening_Dataset/blob/main/dataset.xlsx (accessed on 10 July 2022).

https://github.com/MaazAmjad/Threatening_Dataset/blob/main/dataset.xlsx
https://github.com/MaazAmjad/Threatening_Dataset/blob/main/dataset.xlsx

Appl. Sci. 2022, 12, 10342 17 of 18

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Statista. Number of Social Media Users Worldwide from 2018 to 2027. Available online: https://www.statista.com/statistics/27

8414/number-of-worldwide-social-network-users/ (accessed on 10 July 2022).
2. Chaffey, D.G. Social Media Statistics Research Summary. 2022.

Available online: https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-
research/ (accessed on 10 July 2022).

3. Schmidt, A.; Wiegand, M. A survey on hate speech detection using natural language processing. In Proceedings of the Fifth
International Workshop on Natural Language Processing for Social Media, Valencia, Spain, 11–17 April 2017; pp. 1–10.

4. Wang, X.; Liu, Y.; Sun, C.J.; Wang, B.; Wang, X. Predicting polarities of tweets by composing word embeddings with long
short-term memory. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 1; pp. 1343–1353.

5. Del Vigna, F.; Cimino, A.; Dell’Orletta, F.; Petrocchi, M.; Tesconi, M. Hate me, hate me not: Hate speech detection on facebook. In
Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), Venice, Italy, 17–20 January 2017; pp. 86–95.

6. Behzadan, V.; Aguirre, C.; Bose, A.; Hsu, W. Corpus and deep learning classifier for collection of cyber threat indicators in twitter
stream. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December
2018; pp. 5002–5007.

7. Kok, S.; Abdullah, A.; Jhanjhi, N.; Supramaniam, M. Ransomware, threat and detection techniques: A review. Int. J. Comput. Sci.
Netw. Secur 2019, 19, 136.

8. Dionísio, N.; Alves, F.; Ferreira, P.M.; Bessani, A. Cyberthreat detection from twitter using deep neural networks. In Proceedings
of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.

9. Malmasi, S.; Zampieri, M. Detecting hate speech in social media. arXiv 2017, arXiv:1712.06427.
10. Oostdijk, N.; Halteren, H.v. N-gram-based recognition of threatening tweets. International Conference on Intelligent Text Processing

and Computational Linguistics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 183–196.
11. Alakrot, A.; Murray, L.; Nikolov, N.S. Towards accurate detection of offensive language in online communication in arabic.

Procedia Comput. Sci. 2018, 142, 315–320. [CrossRef]
12. Amjad, M.; Ashraf, N.; Zhila, A.; Sidorov, G.; Zubiaga, A.; Gelbukh, A. Threatening language detection and target identification

in Urdu tweets. IEEE Access 2021, 9, 128302–128313. [CrossRef]
13. Razavi, A.H.; Inkpen, D.; Uritsky, S.; Matwin, S. Offensive language detection using multi-level classification. In Canadian

Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; pp. 16–27.
14. Chen, Y.; Zhou, Y.; Zhu, S.; Xu, H. Detecting offensive language in social media to protect adolescent online safety. In Proceedings

of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing,
Amsterdam, The Netherlands, 3–5 September 2012; pp. 71–80.

15. Zampieri, M.; Malmasi, S.; Nakov, P.; Rosenthal, S.; Farra, N.; Kumar, R. Predicting the type and target of offensive posts in social
media. arXiv 2019, arXiv:1902.09666.

16. Xiang, G.; Fan, B.; Wang, L.; Hong, J.; Rose, C. Detecting offensive tweets via topical feature discovery over a large scale twitter
corpus. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA,
29 October–2 November 2012; pp. 1980–1984.

17. Burnap, P.; Williams, M.L. Us and them: Identifying cyber hate on Twitter across multiple protected characteristics. EPJ Data Sci.
2016, 5, 1–15. [CrossRef] [PubMed]

18. Gómez-Adorno, H.; Enguix, G.B.; Sierra, G.; Sánchez, O.; Quezada, D. A Machine Learning Approach for Detecting Aggressive
Tweets in Spanish. IberEval@ SEPLN 2018, 102–107. Available online: http://ceur-ws.org/Vol-2150/MEX-A3T_paper2.pdf
(accessed on 10 July 2022).

19. Mishra, P.; Del Tredici, M.; Yannakoudakis, H.; Shutova, E. Abusive language detection with graph convolutional networks.
arXiv 2019, arXiv:1904.04073.

20. Ishisaka, T.; Yamamoto, K. Detecting nasty comments from BBS posts. In Proceedings of the 24th Pacific Asia Conference on
Language, Information and Computation, Tohoku, Japan, 4–7 November 2010; pp. 645–652.

21. Rani, P.; Ojha, A.K. KMI-coling at SemEval-2019 task 6: Exploring N-grams for offensive language detection. In Proceedings of
the 13th International Workshop on Semantic Evaluation, Minneapolis, MN, USA, 6–7 June 2019; pp. 668–671.

22. Polignano, M.; Basile, P.; De Gemmis, M.; Semeraro, G. Hate Speech Detection through AlBERTo Italian Language Understanding
Model. In NL4AI@ AI* IA, Rende, Italy, 19–22 November 2019; pp. 1–13. Available online: http://ceur-ws.org/Vol-2521/paper-
06.pdf (accessed on 20 July 2022).

23. Beyhan, F.; Çarık, B.; Arın, I.; Terzioğlu, A.; Yanikoglu, B.; Yeniterzi, R. A Turkish hate speech dataset and detection system. In
Proceedings of the Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022; pp. 4177–4185.

24. Das, M.; Banerjee, S.; Saha, P. Abusive and threatening language detection in urdu using boosting based and bert based models:
A comparative approach. arXiv 2021, arXiv:2111.14830.

https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/
https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/
http://doi.org/10.1016/j.procs.2018.10.491
http://dx.doi.org/10.1109/ACCESS.2021.3112500
http://dx.doi.org/10.1140/epjds/s13688-016-0072-6
http://www.ncbi.nlm.nih.gov/pubmed/32355598
http://ceur-ws.org/Vol-2150/MEX-A3T_paper2.pdf
http://ceur-ws.org/Vol-2521/paper-06.pdf
http://ceur-ws.org/Vol-2521/paper-06.pdf

Appl. Sci. 2022, 12, 10342 18 of 18

25. Pelle, R.; Alcântara, C.; Moreira, V.P. A classifier ensemble for offensive text detection. In Proceedings of the 24th Brazilian
Symposium on Multimedia and the Web, Salvador, Brazil, 16–19 October 2018; pp. 237–243.

26. Jaleel, H.Q.; Stephan, J.J.; Naji, S.A. Textual Dataset Classification Using Supervised Machine Learning Techniques. Eng. Technol.
J. 2022, 40, 527–538. [CrossRef]

http://dx.doi.org/10.30684/etj.v40i4.1970

	Introduction
	Literature Review
	Materials and Methods
	Input Layer
	Data Preparation Layer
	Features Extraction
	Feature Vector Approaches

	Data Processing and Knowledge Discovery
	Extra Tree
	Bernoulli Naive Bayes
	Support Vector Classifier
	Logistic Regression
	Stacking
	Deep Learning Architectures

	Application and Evaluation Layer

	Experiments and Results
	Results Using BoW Features
	Experimental Results Using TF-IDF
	Results Using Cross-Validation
	Results Using Deep Learning Models
	Comparison with Base Study
	Discussion

	Conclusions and Future Work
	References

