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Abstract: Building energy consumption prediction has become an important research problem within
the context of sustainable homes and smart cities. Data-driven approaches have been regarded as
the most suitable for integration into smart houses. With the wide deployment of IoT sensors, the
data generated from these sensors can be used for modeling and forecasting energy consumption
patterns. Existing studies lag in prediction accuracy and various attributes of buildings are not very
well studied. This study follows a data-driven approach in this regard. The novelty of the paper
lies in the fact that an ensemble model is proposed, which provides higher performance regarding
cooling and heating load prediction. Moreover, the influence of different features on heating and
cooling load is investigated. Experiments are performed by considering different features such as
glazing area, orientation, height, relative compactness, roof area, surface area, and wall area. Results
indicate that relative compactness, surface area, and wall area play a significant role in selecting
the appropriate cooling and heating load for a building. The proposed model achieves 0.999 R2

for heating load prediction and 0.997 R2 for cooling load prediction, which is superior to existing
state-of-the-art models. The precise prediction of heating and cooling load, can help engineers design
energy-efficient buildings, especially in the context of future smart homes.

Keywords: energy consumption prediction; cooling load; smart homes; Internet of Things;
sustainable homes

1. Introduction

Internet of Things (IoT) is revolutionizing many sectors to improve productivity and
advance the human lifestyle. The smart home is one such example of IoT applications to
enhance energy efficiency and sustainability [1]. Several physical devices are connected to
the Internet for monitoring and tracking the status of the physical environment and house
activities. The human being does not need to be at home to perform these activities. As
billions of IoT devices need power to operate, energy resources are scarce, and preserving
energy resources is very important. For estimating the cooling or heating load of a building,
temperature characteristics or profiles of smart homes should be analyzed. If the relation
between the building structure and energy requirements is known, then the builder designs
and architects the building architecture, which can save energy and effectively use the
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energy to heat or cool the building. Therefore, the heating load (HL) and cooling load (CL)
of a building estimation have been a problem in the building energy efficiency field.

Energy consumption prediction is an important research area as it consumes approx-
imately 30% of the total energy and its carbon emissions are approximately 33% in 2021
[2]. Despite developments in the building sector, the current efforts are not enough to
achieve the 1.5 ◦C scenario. Smart sustainable infrastructures are needed to meet the
rapidly growing urbanization. From this perspective, energy consumption prediction and
modeling is an important task to obtain smart and low energy-requiring infrastructures.
Three primary approaches for building energy consumption modeling and forecasting are
physical models, data-driven models, and hybrid models [3]. Data-driven approaches have
been regarded as the most suitable for integration into smart houses.

With the wide deployment of IoT sensors in smart homes and appliances, such sensors
generate large amounts of data. Data-driven approaches leverage the data for modeling
and forecasting energy consumption patterns. Furthermore, the use of machine learning
and deep learning models provide flexible and reliable solutions in this regard [4]. Sev-
eral solutions exist for building energy prediction in the literature [5–7]. However, such
solutions lack several aspects. First, predominantly, studies focus on the use of individual
machine learning models, and ensemble models are not properly investigated. Second, the
performance of such models still needs improvement regarding prediction accuracy. Third,
often the models are optimized by fine-tuning different hyperparameters, and the potential
of feature selection is partially investigated. In addition, the role of different attributes such
as roof area, wall area, glazing, etc. is not very well studied. As a result, such studies are
not very well suited for predicting the energy needs of modern smart homes. This study
aims to overcome these issues.

This study follows a machine learning-based data-driven approach for building energy
consumption prediction and makes the following contributions:

• A novel ensemble model is proposed that combines three random forest models
(3RF) for predicting the heating and cooling load of the buildings. Performance
comparison of the proposed approach is carried out with reference to K-nearest
neighbor (KNN), linear regression (LR), random forest (RF), general additive model
(GAM), and multilayer perceptron (MLP). In addition, convolutional neural networks
(CNN), long short-term memory (LSTM), and their ensemble CNN-LSTM are also
used for experiments.

• The influence of different features related to building is investigated. The performance
of the models is analyzed regarding different features from the dataset such as glazing
area, orientation, height, relative compactness, roof area, surface area, and wall area.
Mean absolute error, root mean squared error, mean absolute percentage error, and
coefficient of determination R-squared is used for performance evaluation.

• Performance is also evaluated within the context of existing state-of-the-art studies
regarding prediction accuracy and computational complexity.

The rest of the article is organized as follows. Section 2 includes state-of-the-art works
using machine learning and deep learning models to predict the building energy efficiency
performance. Section 3 discusses the proposed methodology to predict heat loading and
cool loading in buildings. Section 3.3 covers the description of the building energy efficiency
simulated datasets. Section 4 discusses the performance results of the proposed machine
learning and deep learning models to predict heat and cool loading. Section 5 concludes
the article.

2. Literature Review

Energy usage optimization and energy saving of the buildings are needed to conserve
energy. Statistical modeling techniques are commonly used to predict the energy con-
sumption of the building given the building characteristics. Researchers applied various
machine learning models to predict energy consumption and efficiency. The building
energy efficiency is measured in terms of heat loading and cool loading parameters.
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Kumar et al. [5] proposed extreme learning machine (ELM) and online sequential
ELM (OSELM) methods to predict the building HL and CL parameters. The combinations
of ELM methods are used to compare the prediction performance of the models with
well-known ML models such as artificial neural network (ANN), support vector machine
(SVM), gradient boosting (GB), etc. The authors also varied the attribute combinations
to compare the performance of the proposed methods. The reported results indicate that
ELM with group 4 attribute combination produced the best result with a 0.0456 mean
absolute error (MAE) for HL and 0.0358 for CL prediction. An ANN-based solution is
proposed in [6] to predict the cooling and heating load in the buildings. A component-based
approach is taken to predict the energy efficiency of the buildings. The ANN is applied at
each component level to obtain the final HL and CL performance results. The Energyplus
software is used to generate the simulation-based datasets. The reported results show that
R2 is 0.974 for HL and 0.999 for CL. The proposed solution is a component-based approach
with the advantage of the reusability of the ML models. However, the ML model may
suffer from data or concept drift.

The authors presented an LSTM-based deep learning solution to predict the HL and
CL performance in [8]. Transfer learning and multitask-based learning are also embedded
in the solution to predict building energy efficiency. One of the advantages of deep learning
models is the computation speed compared to building performance simulation (BPS). The
method obtained an R2 of 0.983 for CL and 0.848 for HL performance. The HL performance
still requires improvement. Additionally, the training time for LSTM-based solutions is
much higher than the ANN and machine learning-based solutions. XGboosting algorithm is
proposed in [9] to predict the building energy load in terms of HL and CL. The performance
metric’s root mean squared error (RMSE), R2, MAE, and mean absolute percentage error
(MAPE) are measured for both the HL and CL prediction. The reported results show that
the obtained R2 for HL is 0.9993, while CL has a 0.998 R2. Chakraborty et al. [10] performed
an in-depth study of feature selection, feature engineering, and parameter optimization to
predict the building energy loads on the generated synthetic dataset. Machine learning and
deep learning techniques such as XGBoost and ANN are used to conduct the experiments
and predict the HL and CL. Results indicate that the XGBoost obtained RN_RMSE of 2.95
for CL and 3.90 for HL, while the R2 value of 0.98 for CL and 0.95 for HL are obtained when
the feature engineering is performed. However, the feature selection and hyperparameter
optimization are not included. The authors pointed out that the scarcity of datasets hinders
the research progress in this context. Octahedral regression-based building energy load
prediction is proposed in [7]. Octahedral regression is a kernel averaging methodology
proposed by authors to predict the building energy loads. Experimental results indicate an
MAE value of 0.945 for HL, whereas the MAE for CL is 1.113. The prediction performance
still has room for improvement.

The authors propose a multi-objective optimization model in [11] to predict the build-
ing energy load. The method MOO was also presented to improve the hyperparameter
selection process. The authors claim that the proposed optimized model enhances the
energy prediction accuracy and computation time compared to the grid search model
parameter selection. The experimental results on simulated building datasets show that the
HL and CL obtained higher R2 values of 0.992 and 0.993, respectively. Sadeghi et al. [12]
implemented a deep neural network (DNN) model to predict the building energy load
prediction. The authors show that the DNN performed better than ANN to estimate the
energy load. Normalized RMASE (NRMSE) and normalized MAE (NMAE) are used for
evaluation. The R2 value is 1 for the HL case, whereas 0.994 for the CL case. However,
the training time for DNN is higher than for machine learning models. Song et al. [13]
proposed a temporal convolution neural network (TCN) to predict hourly heat loading.
The TCN has the advantage of rapidly extracting complex features due to the presence of
a convolution neural network (CNN) and recursive neural network (RNN). The hourly
heat loading performance accuracy is reported as 97.9% and an MAE value of 0.102 on



Sensors 2022, 22, 7692 4 of 22

the test dataset. However, the applicability of the TCN algorithm in building energy load
prediction is not explored in the study.

Sajjad et al. [14] presented a sequential learning model framework to predict the HL
and CL as multi-outputs. The authors claimed that their work is the first to propose a multi-
output HL and CL prediction using a gated recurrent unit (GRU) to eliminate the tedious
task of training separately for HL and CL prediction. The HL obtained a MAPE of 0.9315,
and CL obtained a MAPE of 1.0132. However, the training time for the neural networks is
much higher than for the machine learning models. The training time-based comparison is
not discussed in the article. A feature construction method along with ensemble learning
algorithms is proposed to predict the CL prediction in [15]. Different methods, such as
K-clustering, discrete wavelet transform (DWT), etc., were used for feature construction,
and three models of gradient boosting machine (GBM), random forest (RF), and cubist
algorithms were used to evaluate the cooling load accuracy. The dataset was obtained from
the Tianjin office building in China. The reported results indicate that the CL achieved
an R2 of 99.8% when the combination of DWT and the Cubist algorithm was used for
evaluation. However, this work is limited to cooling load prediction.

Olu et al. [16] performed building energy performance prediction at the building
design stages. The authors explored various machine learning techniques to evaluate energy
performance. The feature selection and hyperparameter selection were also considered
to improve the performance. The GB performed better than all other machine learning
models with an accuracy of 67% and an F1 score of 65%. A shuffled complex evolution
(SCE) performance optimization technique is proposed in [17] to enhance the performance
of multi-layer perceptron (MLP). The authors claim that SCE improved the prediction
accuracy by 22.84% and outperformed the benchmark optimizer such as moth-flame and
optics-inspired models. The CL prediction results show that the SCE_MLP model achieved
a 0.9227 R2 for the well-known building energy efficiency datasets [18].

Table 1 provides an analytical overview of the state-of-the-art works, which worked
on progressively improving the building energy efficiency. Several works in the literature
can be found that have worked on improving the performance of HL and CL in solving
the building energy efficiency problem. Although the reported results showed significant
prediction performance, there is still scope for improvement. Additionally, the detailed
study of the input features and output is not well explored in the literature. The prior
works do not address an ideal solution that improves the performance and reduces the
computation and training time. Thus, a detailed study on the building energy datasets is
performed using machine learning and deep learning techniques, feature selection, and
hyperparameter tuning to obtain an accurate, generalized, and low training time solution.
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Table 1. Comparative analysis of discussed works on heating and cooling load prediction.

Ref. Year Dataset Model Target Evaluation Metrics Results

[5] 2018 UCI ELM, OSELM HL & CL MAE, Prediction
Time(PT)

RBF—HL: MAE 0.0456 PT 0.0389; CL:
MAE 0.0358 PT 0.0348

[6] 2018 Energy Plus Simula-
tion ANN HL & CL R2, Maximum Deviation

ANN—Maximum Deviation HL: 3.7%
CL: 3.9% ; R2 HL:0.974 CL:0.999

[8] 2018 Energy Plus Simula-
tion DL HL & CL R2 R2—CL:0.983; HL:0.848

[9] 2019 UCI XGBoost HL & CL RMSE, R2, MAE, MAPE

XGBoost—HL: RMSE(kW) 0.265, R2

0.9993, MAE(kW) 0.175, MAPE(%)
0.193; CL: RMSE(kW) 0.307, R2 0.461,
MAE(kW) 1.197, MAPE(%) 0.998

[10] 2019 Synthetic Dataset XGBoost, ANN HL & CL RMSE ,R2 XGBoost—CL: RMSE 2.95, R2 0.98; HL:
RMSE 3.90, R2 0.95

[7] 2019 UCI Octahedric Regres-
sion(OR) HL& CL MAE, MSE, MAPE

OR—HL: MAE 0.945, MSE 2.289, MAPE
4.182, CL: MAE 1.113, MSE 2.731, MAPE
4.554

[11] 2020 Energy Plus Simula-
tion

Multi-objective opti-
misation HL & CL RMSE, MAE, R2 HL: RMSE 10.25, MAE 2.54, R2 0.992 CL:

RMSE 6.63, MAE 2.36, R2 0.993

[12] 2020 UCI DNN HL & CL NMAE, MAE, NRMSE,
RMSE, R2

DNN—HL: NMAE 0.018, MAE 0.2,
NRMSE 0.025, RMSE 0.263, R2 1 ; CL:
NMAE 0.03, MAE 0.485, NRMSE 0.039,
RMSE 0.69, R2 0.994

[13] 2020
Heat Exchange Sta-
tions in Anyang City
data

Temporal convo-
lutional neural
network (TCN)

HL MAE, RMSE, MAPE, Ac-
curacy

TCN—MAE 0.102, RMSE 0.129, MAPE
0.021, Accuracy 0.979

[14] 2020 UCI Gated Recurrent
Unit(GRU) HL & CL MAE, MSE, RMSE,

MAPE

GRU—HL: MAE 1.3691, MSE 0.7215,
RMSE 0.8494, MAPE 0.9315; CL: MAE
1.4027, MSE 0.9791, RMSE 0.9894, MAPE
1.0132

[15] 2020
Office Building
in Tianjin China
dataset

K-means clustering,
Discrete Wavelet
Transform(DWT)

CL R2, CV-RMSE R2 99.8%, CV-RMSE 1.5%,

[16] 2022 UK Ministry of
Housing dataset

DT, SVM, Gradient
Boosting(GB) and
all ML

Energy Effi-
ciency Accuracy GB—Accuracy 0.67

[17] 2022 UCI

Shuffled complex
evolution(SCE)-
multi-layer percep-
tion(MLP)

CL RMSE,MAE,R2 SCE-MLP—RMSE 2.5943, MAE 0.8124,
R2 0.9227

3. Proposed Methodology

Our motivation for this study is to leverage the data analytic models for predicting
energy resource consumption in buildings. To improve the prediction performance of the
state-of-the-art energy efficiency HL and CL, the selected machine learning models are
thoroughly evaluated. This study proposes an ensemble model 3RandomForest (3RF) to
predict the HL and CL of a building effectively. The architecture of the proposed 3RF model
is presented in Figure 1. Three RF models are used to test the dataset and predict the HL
and CL. The advantage of our method is to leverage the combinations of more decision
trees from three RF models and achieve optimal performance results.
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Data

RF

RF

RF

Prediction

Figure 1. The architecture of the proposed 3RFF model HL and DL prediction.

3.1. 3Random Forest

The decision tree models showed promising results for predicting the HL and DL.
In order to improve the performance, 3RF is proposed to repeat the RF model regression
prediction three times on the energy efficiency dataset. This repetition helps to use more
combinations of the input dataset decision trees. The voting method is used to predict the
final value from three RF models.

Let b = {1, 2, . . . , B} be the number of decision trees. Ĉb(x) denotes the regression
prediction value of the bth decision tree [19]. Then, the output of the RF can be denoted as:

ĈB
r f (x) = Average{Ĉb(x)}B

1 (1)

The 3RF voting-based output prediction is represented as follows:

Y = Voting(ĈB
r fi
(x)), i = 1 · · · 3 (2)

The flow of the steps used to train and test the HL and DL datasets is depicted in
Figure 2. The dataset is split into the training and testing dataset with proportions of
80% and 20%, respectively. The relation between the dataset features and the HL and CL
output is analyzed to select the machine learning models. The feature versus HL and CL
trends are also investigated to present the feature relation with the HL and CL output. The
performance of the proposed model is evaluated in comparison to several well-known
machine learning models.

Dataset

Data
Splitting

Training Set

Testing Set

Model Testing

Model EvaluationModel Training

Figure 2. The architecture of the energy efficiency data processing pipeline.
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3.2. Machine Learning Models

A brief overview of the employed machine learning models is described in this section.
The grid search method is used to find the best hyperparameter setting. The model
parameters are tuned between specific ranges to get the best results. Model hyperparameter
setting and tuning range are shown in Table 2.

Table 2. Machine learning model hyperparameter settings.

Model Hyperparameters Tuning Range

MLP random_state=1, max_iter=500 random_state={1 to 10}, max_iter={100 to 1000}
KNN n_neighbour=3, weights=’uniform’ n_neighbour={1 to 5}, weights=’uniform’
LR Default Default
RF n_estimators=300, max_depth=10 n_estimators={50 to 500}, max_depth={2 to 50}
3RF RF+RF+RF 2RF, 3RF, 4RF, 5RF

3.2.1. K-Nearest Neighbors

KNN can be used for both classification and prediction. The prediction works based
on feature similarity. The nearest neighbors were selected based on different distance
measures. The uniform weight was used to assign equal weights to all neighbors. The
number of neighbors was selected as three in our evaluation. The average of the nearest
neighbor data values was assigned as the final predicted values. The Euclidean distance (E)
was used to determine the nearest neighbors [20].

E =

√√√√ k

∑
i=1

(xi − yi)2 (3)

where k denotes the number of neighbors, and xi and yi are the data points in ith dimension
in the Equation (3).

3.2.2. Linear Regression

LR works on the principle that the input independent variables are linearly related to
the output dependent variable. The multiple linear regression is represented as [21]:

y = β1x1 + β2x2 + · · ·+ βrxr (4)

where x1 · · · xr are the input independent variables, r is the number of input features, and
βr is the rth input feature coefficient in Equation (4).

In order to compensate for model overfitting, the error ε is modeled as a Gaussian
distribution. The multiple linear regression in matrix form is represented as follows.

yi = xTi β + εi. (5)

3.2.3. Random Forest

RF is a family of decision tree-based machine learning algorithms. Ensemble learning
is used to perform the classification and predictions. The bootstrapping RF is used to
perform the predictions in this work. The bootstrapping method combines ensemble
learning and the random selection of the decision trees to determine the prediction output
as the average value of all the decision tree predictions.

Let b = 1 and B be the number of decision trees; Ĉb(x) denotes the regression predic-
tion value of the bth decision tree [19], then the regression prediction of the RF forest is
defined as:

ĈB
r f (x) = Average{Ĉb(x)}B

1 (6)
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3.2.4. General Additive Model

GAM is a slight variation of the linear regression model [22]. The linear form is
replaced with the sum of the smooth functions in GAM. The function is represented as
fi(xi) for the ith input.This technique is helpful to detect the nonlinear covariate effects
between input and output. The GAM is defined as follows:

g(E(Y)) = β0 + f1(x1) + f2(x2) + · · ·+ fr(xr). (7)

where f (x) is the smooth function, r denotes the number of input features, E(Y) signifies
the linear exponential output Y distribution, and g() is the link function in Equation (7).
The link function can be selected as an identity or log function.

3.2.5. Multilayer Perceptron

MLP is a global approximator and is well suited for mapping the nonlinear input–
output combination. Typically, MLPs consist of three layers. The input layer feeds the input
values to the neural network. The output layer performs the classification or prediction of
the given problem. The hidden layer includes the neurons and supports the computations
to process the input data and forwards the processed data as input to the output layer. The
number of hidden layers can be arbitrary. The neuron processing unit is represented as
follows [23].

f (x) = Φ(
m

∑
i=1

wi ∗ xi) + b (8)

where b denotes the bias value, Wi denotes the ith neuron weight, and xi denotes the
input to the ith neuron unit. Φ is the nonlinear activation function and f (x) is the neuron
processing unit output in the Equation (8).

3.3. Dataset Description

The heat and cool loading specifications must be determined when designing an
energy-efficient building. The building feature characteristics will be used to determine
the heat loading and cool loading. Thus, the building designer and designers expect to use
the building features to estimate the heat loading and cool loading. Therefore, the target
output parameters in the datasets are heat loading and cool loading for energy efficiency
prediction. The dataset was collected from the University of California Irvine Machine
learning laboratory.

The total surface (S) is determined as:

S = Wall + 2 ∗ Floor (9)

The Relative Compactness (RC) is measured as:

RC = 6 ∗ V23

S
(10)

The energy efficiency dataset was acquired from the UCI repository, which was gen-
erated using Ecotect simulation software and presented by [18]. The dataset comprises
768 building samples, and each sample is represented with eight features. To generate 768
combinations, 12 building shapes are simulated in Ecotect. The 12 building shapes had the
same volume (771.75 m3) and the features were varied. The variables orientation, glazing,
and glazing distribution feature varied further to make the dataset. The orientation includes
the building’s north, south, east, and west orientation. The glazing area or window-to-floor
ratio varied from 10–40%. The four glazing area values taken were 0%, 10%, 25%, and 40%
in the dataset. The glazing area distribution combinations included uniform, majority of
the distribution in either north, south, east, or west. Overall, the total number of building
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combinations was (12×3×5×4)+(12×4)= 768. The detailed description of 8 features, the
feature value ranges, and metrics are reported in Table 3.

Table 3. Description of dataset features.

Feature Combinations Value Range Unit Description

Input

RelativeCompactness 12 0.68–0.98 - The volume to surface ratio is compared the
most compact shape with same volume

SurfaceArea 12 514–808 m2 The total area occupied by the building

WallArea 7 245–416 m2 Total area of an exterior building wall includ-
ing all openings

RoofArea 4 110–220 m2 the surface of the roof of the building

OverallHeight 2 3.5–7 m Overall height from the lowest point of condi-
tioned space to the highest point

Orientation 4 2–5 - Orientation decides which direction the build-
ing faces

GlazingArea 4 0–0.4 m2 The total area occupied by windows in a build-
ing

GlazingAreaDistribution 6 0–5 - The direction of the glazing area covered in
the building

Output

Heating Load - 6–43 KWh/m2 Amount of heat added in an area to maintain
the temperature within acceptable range

CoolingLoad - 10–48 KWh/m2
The amount of latent and sensible heat re-
moved from the required area to maintain the
acceptable temperature

3.4. Performance Metrics

The performance of the models was estimated using the metrics MAE, RMSE, MAPE,
and the coefficient of determination R2.

MAE measures the predicted value deviations from the original value. The MAE is
the average difference between the predicted and original values. Given the CL and HL
dataset output original value, yi and the dataset output predicted value was ŷi, and the
total number of values i = 0 . . . N, then the MAE was calculated as:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (11)

RMSE is the standard deviation of the prediction errors. The prediction error mea-
sures the distance of the prediction values from the regression line data values. RMSE is
measured as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (12)

MAPE is the average of the predicted absolute percentage errors. The MAPE is
obtained in percentages, and the sign of the predicted and original difference value does
not matter. MAPE is measured as:

MAPI = 100%×
N

∑
i=1

|yi − ŷi|
yi

(13)

All three error metrics determine the deviation of the predicted value from the original
value. Therefore, the lower the error metric value, the better the model performs.

The R2 determines how well the model fits the data. The R2 value lies between 0 and 1,
and if the R2 value for the model is close to 1, then the model performs well. Considering
the mean of the dataset output predicted value is ŷi, the R2 is defined as:
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R2 = 1−
ΣN

i=1(yi − ŷi)
2

ΣN
i=1(yi − ȳi)2

(14)

4. Results and Discussion

In this section, a detailed description of the experimental results obtained on the
cooling load and heading load datasets is provided. The experiments were run on a
standalone Linux machine with a system configuration of 8 GB RAM and an eight-core
processor. A notebook web application runs locally on the Linux machine to perform the
experiments. The software packages scikit-learn installed, and the Python programming
language was used to implement machine learning models.

4.1. Models’ Performance Analysis for Cooling Load

Figure 3 shows the cooling load output value distribution for the energy efficiency
dataset input features. The eight features, glazing area distribution, glazing area, orienta-
tion, overall height, relative compactness, roof area, surface area, and wall area mapping
with cooling load values, were included in Figure 3. The circle indicates the real data value
and the color lines represent cooling load values obtained when various machine learning
techniques were applied for prediction. Results indicate that the real values highly deviate
from the MLP line that represents the cooling load. On the other hand, the HM maps the
input feature values more accurately with the cooling load data. Figure 3a–c look similar
because the building features gazing area distribution, gazing area, and orientation have a
similar dependency on the required cooling load values. Figure 3a shows that the cooling
load varies significantly when the building height was either 3.5 or 7.0. When the building
height was between 3.5 and 7.0, the cooling load was around 22. The other features, such
as relative compactness, roof area, surface area, and wall area, had irregular dependency
patterns with respect to the cooling load.

Table 4 displays the cooling load performance metrics for machine learning model
regression analysis. It shows that the 3RF performed well compared to other machine
learning models. The 3RF obtained the best R2 of 0.971 for the cooling load. The 3RF error
metrics MAE, MSE, and RMSE values were 2.875, 1.076, and 1.695, respectively. The MLP
and LR did not perform well in measuring the cooling load accurately. The supervised
models such as KNN, decision tree algorithms RF, 3RF, and GAM performed comparatively
well with an R2 value greater than 0.95. A similar pattern was found in the error metrics
for the machine learning techniques in cooling load determination.

Table 4. Cooling load prediction using machine learning models.

Model MAE MSE RMSE R2

MLP 21.835 3.475 4.672 0.777
KNN 2.946 1.351 1.716 0.966

LR 9.652 2.220 3.106 0.887
RF 3.424 1.101 1.850 0.959

GAM 3.471 1.385 1.863 0.964
3RF 0.515 0.526 0.675 0.997

Table 5 lists the accuracy (mean R2) and standard deviation of the machine learning
techniques when testing the cooling load estimation. The 10-fold cross-validation was per-
formed to split the dataset into training and testing datasets and measure the performance
accuracy of the employed techniques. The performance accuracy of the machine learning
models followed a similar trend of the R2 metric value performance in Table 5. Here, 3RF
obtained the best accuracy of 96% among the used models for cooling load estimation.
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(h) Wall area.

Figure 3. Cooling loading features from machine learning models.

The best-performing 3RF model performance was analyzed with respect to the input
features in cooling load estimation. Figure 4 presents the mapping of the feature data with
the output cooling load when the 3RF model is used for estimation. The results indicate
that most of the feature data samples match with the 3RF predicted cooling load output.
Hence, the 3RF performance is better than the other ML models.

Table 5. Cooling load prediction results using 10-fold cross-validation for machine learning models.

Model Mean R2 Standard Deviation

MLP 0.76 +/−0.12
KNN 0.91 +/−0.08

LR 0.91 +/−0.08
RF 0.91 +/−0.08

GAM 0.90 +/−0.08
3RF 0.96 +/−0.03
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Figure 4. Cooling load features using the proposed 3RF model.

The experiments were repeated for heating load performance estimation. As shown in
Figure 5, the heating load mapping with respect to the input features is performed when
the data is trained using machine learning models. The trends follow patterns similar
to cooling load estimation. Figure 5 shows that the MLP model is missing some of the
real data in the heating load estimation line for most of the input features. On the other
hand, the 3RF matches the real data into the heating load prediction line. It means that 3RF
performed well in accurately estimating the heat loading in a building.
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Figure 5. Heating load features using machine learning models.

4.2. Heat Loading Performance Analysis

Table 6 shows the performance of employed models in estimating a building’s heat
loading. Results indicate that the 3RFF outperformed all other models in predicting heat
loading. The 3RFF obtained the best performance in terms of R2 with a 0.998 score and the
lowest error metrics value. The RF and GAM comparatively performed well with more
than 0.99 R2 value. The MLP and LR were the least-performing models to estimate heat
loading. Overall, the results indicate that decision tree-based techniques work well to
comprehend the energy efficiency input features and correctly estimate the heat and cool
loading values.

Table 7 displays the performance of machine learning models for heating load pre-
diction problems. The 10-fold cross-validation method is used to split the datasets into
train and test sets. Results show that the RF achieved the best performance accuracy on the
heat loading estimation. A similar trend in Table 6 is observed for the machine learning
performance accuracy results. The decision tree algorithms performed well to obtain the
best accuracy for the heating load case. The standard deviation for each model indicates
that the accuracy can be slightly varied, and the obtained accuracy results may not be the
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same when repeated cross-validation experiments are carried out. Table 8 shows the per
epochs score for 3RF in both cooling and heating cases.

Table 6. Heating load prediction performance using machine learning models.

Model MAE MSE RMSE R2

MLP 14.241 2.885 3.773 0.849
KNN 5.185 1.729 2.277 0.950

LR 10.260 2.353 3.203 0.896
RF 0.369 0.372 0.607 0.996

GAM 1.060 0.749 1.029 0.990
3RF 0.521 0.548 0.722 0.998

Table 7. Heating load results using 10-fold cross-validation for machine learning models.

Model Mean R2 Standard Deviation

MLP 0.70 +/−0.15
KNN 0.85 +/−0.08

LR 0.89 +/−0.05
RF 0.92 +/−0.08

GAM 0.91 +/−0.08
3RF 0.95 +/−0.08

Table 8 shows the fold-wise cross-validation results using the best performing 3RF
model. Fold-wide results are provided to analyze the fold-wise variance in the prediction
accuracy of the 3RF model. It can be observed that, except for the first fold, the results are
consistent with small variations in the prediction accuracy of building heating and cooling.

Table 8. Fold-wise cross-validation accuracy for 3RF model.

Fold Heating Load Cooling Load

1 0.724 0.862

2 0.975 0.982
3 0.976 0.958
4 0.973 0.976
5 0.981 0.989
6 0.974 0.966
7 0.978 0.982
8 0.976 0.968
9 0.973 0.956
10 0.985 0.975

Mean 0.95 +/− 0.08 0.96 +/− 0.03

The best performing RF model for heat loading prediction per the energy efficiency
dataset features is shown in Figure 6. The subfigures show the real data points, and the
RF predicted heat loading estimation line graph maps for all the feature data. Overall, the
features such as grazing area distribution, glazing area, orientation, relative compactness,
surface area, and wall area greatly influence the heat loading required in a building.
Therefore, selecting the optimal building parameters is crucial for building energy efficiency.
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Figure 6. Heating load prediction using best performing RF features.

Figure 7 depicts the performance comparison of both HL and CL prediction using
the machine learning techniques KNN, LR, RF, and 3RFF. The results indicate that the
proposed 3RFF performed better than the other ML models for HL and CL prediction. The
3RFF obtained an accuracy of 0.95 for both HL and CL prediction. The SD of the proposed
HL accuracy prediction is higher than the CL accuracy prediction. The KNN is the least
performed model for both HL and DL prediction. The MLP model was the least performed
model among the selected HL and CL evaluation models. The ensemble models such as
RF performed better than the linear regression model for energy efficiency problems. Our
findings match the prior works, which showed that the ensemble learning models obtained
the best HL and CL performance prediction. Overall, the performance accuracy results in
Figure 7 proved that the proposed model performed well and outperformed the employed
models in this work.
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Figure 7. Performance comparison of machine learning models.

Besides using the 3RF model, different ensemble schemes were used to achieve the
optimal results such as different combinations of RF, LR, and KNN. For the most part, the
existing literature uses only two models for ensemble models. Keeping this in mind, three
models were used for the ensemble. For this purpose, the 3LR ensemble was also tried
but the performance of the model was not as good as using the 3RF. In addition, 4RF and
5RF were also implemented but there was no improvement in results after 3RF. To avoid
computational costs for 4RF and 5RF, a 3RF ensemble was used. Table 9 is provided to
show the performance of 2RF, 3RF, 4RF, and 5RF regarding the prediction accuracy and
computational complexity. It can be observed that increasing the RF models from 3 to 4 and
5 does not add any value regarding accuracy. Instead, the computational time increased.
Thus, the best results were obtained using 3RF for building heating and cooling prediction.

Table 9. Accuracy and computational cost (time) for different variants of RF.

Model Heating Load Cooling Load

R2 Score Time (s) R2 Score Time (s)

2RF 0.996 0.59 0.996 0.747
3RF 0.998 0.61 0.997 0.83
4RF 0.997 1.34 0.997 1.97
5RF 0.997 1.67 0.997 1.87

4.3. Performance of Deep Learning Models

State-of-the-art deep learning algorithms such as convolution neural network (CNN),
long short-term memory (LSTM), and the combination of CNN and LSTM have been
considered to evaluate the HL and CL performance.

The CNN comprises the embedding layer, 1D convolution layer, 1D max-pooling
layer, flatten layer, and dense layer. The ReLu activation function is used to perform the
convolution. A pool size value of four was also considered to downsample the feature map.
The ’Adam’ optimizer and MAE loss function was used to train the CNN models. The
dataset was split as training and testing data with 80% and 20% ratios. The batch size of
128 and 2000 epochs were selected to train the CNN models. Complete details of the CNN
hyperparameters considered for HL and CL evaluation are given in Table 10.

LSTM is a type of recurrent neural network (RNN). A 100-unit LSTM layer was used
in this work to design LSTM. Dropout and dense layers were also included to train the
LSTM model for HL and CL prediction. The same CNN batch size, epochs, and optimizer,
loss function parameters were considered to train the LSTM model.
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Table 10. Hyperparameters used for the deep learning models for HL and CL prediction.

Parameters CNN LSTM CNN-LSTM

Conv1D - 1 1
MaxPooling1D - Yes Yes

Poolsize - 4 4
Dense 1 1 1

Dropout 0.2 - -
Activation ReLU ReLU ReLU
Batchsize 128 128 64
Optimizer Adam Adam Adam

Loss MAE MAE MAE
Number of Units 128 128 128

Epochs 2000 2000 2000
Flatten Yes Yes No

The CNN and LSTM models were combined to evaluate the HL and CL performance.
The convolution, max pooling, and LSTM models were included in the CNN-LSTM model.
The set of hyperparameters used in CNN and LSTM was also used in the CNN-LSTM.
Table 10 displays all the hyperparameters used for CNN, LSTM, and CNN-LSTM models.

4.3.1. Cooling Load Prediction using Deep Learning

The cooling load estimation was also performed using deep learning techniques such
as CNN, LSTM, and CNN-LSTM. Figure 8 displays the loss of the three models when the
epochs vary from 0 to 2000 for both the validation and train dataset. The model loss was
promptly reduced from 25% to 2% when the first epoch was completed in both CNN and
CNN-LSTM models. The model loss maintains 2% until the completion of the epoch 2000.
The model loss was drastically reduced during the first few epochs in the LSTM model and
then settled to 3% loss when the epoch completed 60 epochs. The model loss maintained a
constant 3% from epoch 60 to 2000 epochs for both the train and validation dataset.

Table 11 displays the performance metrics of the three deep learning models when
tested on the cooling load estimation. LSTM performed well compared to CNN and CNN-
LSTM models with an R2 value of 0.933. The combination of LSTM and CNN degraded
the performance compared to the LSTM and CNN alone. The error metrics followed the
inverse trend of the R2 on all three models. The best performing deep learning model LSTM
obtained the MAE, MSE, and RMSE values of 5.82, 1.92, and 2.41, respectively. Overall, the
proposed 3RF obtained the best performance in cooling load estimation for building energy
efficiency.

Table 11. Error statistics of deep learning models for cooling load.

Model MAE MSE RMSE R2

LSTM 5.82 1.92 2.41 0.93
CNN 7.23 2.03 2.69 0.92

CNN-LSTM 8.33 2.18 2.89 0.90
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Figure 8. Training and validation loss for deep learning models for cooling load.

4.3.2. Heat Load Prediction using Deep Learning

Deep learning models CNN, LSTM, and CNN-LSTM are used for the estimation of
the heating load. Figure 9 shows the model loss of the three DL models when the epochs
vary from 0 to 2000 for both train and validation datasets. The model loss for both the cool
loading and heat loading estimation followed a similar pattern. When CNN was trained
and validated, the model loss abruptly dropped to 2% when epoch one was completed. On
the other hand, the LSTM model needed at least 60 epochs to reach the 2% model loss. The
CNN-LSTM and CNN models did not change the model loss value from epochs 30 to 2000.
Further, CNN obtained the best model accuracy within the first few epochs compared to
the LSTM.

Table 12 presents the performance of deep learning models for the heating load case.
When the error metrics and R2 values were considered, the LSTM model performed better
than the CNN and CNN-LSTM. The LSTM obtained the R2 value of 0.95 and the RMSE
value of 2.22. The CNN produced the R2 value of 0.90, slightly less than the LSTM. The
CNN-LSTM had the worst performance and obtained an R2 value below 0.90. The result
indicates that the combination of CNN and LSTM does not perform well for regression
problems, where the output value varies based on the number of input features.

Table 12. Performance of deep learning models for the heating load.

Model MAE MSE RMSE R2

LSTM 4.95 1.73 2.22 0.95
CNN 9.23 2.17 3.04 0.90

CNN-LSTM 11.21 2.33 3.35 0.87
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Figure 9. Models training and validation loss for heating loading.

Results of 10-fold cross-validation are also added for deep learning models. Results
indicate that LSTM achieved better results for both heating load and cooling load prediction
as it achieved 0.90 for heating load prediction and 0.88 for cooling load prediction, as shown
in Table 13. CNN and CNN-LSTM perform marginally lower than LSTM.

Table 13. Results using 10-fold cross-validation for deep learning models.

Model
Heating Load Cooling load

Mean R2 Standard Deviation Mean R2 Standard Deviation

LSTM 0.90 +/−0.08 0.88 +/−0.11
CNN 0.89 +/−0.14 0.85 +/−0.12

CNN-LSTM 0.89 +/−0.05 0.87 +/−0.09

4.4. Performance Comparison with State-of-the-Art Studies

The proposed 3RF-based building HL and CL prediction are compared with the prior
works, which utilized the same dataset for experiments. For the HL case, the ensemble
learning models obtained good performances with R2 values ranging from 0.98 to 0.998.
The prior works [24–26] leveraged the RF or ensemble learning models and obtained a 0.998
R2. Ref. [6] utilized the component-based machine learning techniques to predict the HL.
The performance of the component-based work is much lower than the best HL prediction
performance. The proposed 3RF model obtained the best performances as compared to
existing ensemble models with an R2 value of 0.999. The proposed model is also efficient
in terms of computational cost, as it takes 0.83 seconds(s) for the cooling prediction case for
model training and testing, and for the heating case it takes only 0.61 s.

Existing work [24] on CL performance results reported an R2 value of 0.986 when the
ensemble model was used for evaluation. As shown in Table 14, the proposed method
obtained an R2 value of 0.997. It indicates that the proposed model performed well to
predict the CL. It is also observed that for CL prediction, the proposed model performed
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better than the RF model proposed in [26] with an R2 value of 0.991 and the XGBoost model
proposed in [10] with an R2 value of 0.94. The multi-layer perceptron model proposed
in [17] obtained the CL prediction with a 0.9222 R2, which is far less than the current
work. It is also important to note that deep learning models require higher computational
resources and require a large amount of data to train the model.

Table 14. Comparison with state-of-the-art approaches (metric: R2).

Authors Year Model HL CL

[24] 2014 Ensemble model 0.998 0.986
[25] 2014 Ensemble model 0.998 0.990
[26] 2017 RF 0.998 0.991
[6] 2018 Component based 0.848 0.983
[10] 2019 XGBoost 0.98 0.94
[17] 2020 SCE-MLP - 0.922

Current study 2022 3RF 0.999 0.997

4.5. Discussion and Limitations

The building energy efficiency problem is a significant problem for sustainable and
smart homes. The accurate prediction of the cooling and heating load for the building
structure helps the designers to design energy-saving building structures for homeowners
and indirectly helps society by saving energy consumption. This study extensively analyzes
the building features, cooling load, and heating load dependency on the features using
data analytics models. The RF-based decision tree models estimate the cooling and heating
load most accurately per the building features. The relative compactness, surface area, and
wall area play a significant role in selecting the appropriate cooling and heating load for a
building. However, the dataset used in this study is limited to 768 building designs and
the corresponding cooling and heating load values. For further validation, a larger dataset
is needed to test the regression performance of heating and cooling load estimation. The
deep learning models CNN and LSTM did not perform well for energy load prediction.
Further experiments using deep learning models with a larger dataset are intended.

5. Conclusions

Energy consumption prediction is an important research problem for sustainable
homes and modern smart cities. Cooling and heating load prediction helps designers make
energy-sustaining architectures. Modern buildings and smart cities employ a large number
of IoT devices that generate large amounts of data regularly. Data-driven approaches
leverage this data for cooling and heating load prediction. This study proposed a novel
ensemble model, 3RF, to predict buildings’ cooling and heating profiles using different
features such as glazing area, orientation, height, relative compactness, roof area, surface
area, and wall area. Prediction within the context of various features indicates that relative
compactness, surface area, and wall area play a significant role in selecting the appropriate
cooling and heating load for a building. Experimental results using the proposed model
suggest that the model achieves 0.999 R2 for heating load prediction and 0.997 R2 for
cooling load prediction. The model’s performance is superior to both the employed and
existing state-of-the-art models. Precise prediction of energy requirements of modern
buildings can be very important for energy efficiency and sustainability. Moreover, such
predictions can be used for a large number of applications such as energy monitoring,
real-time energy planning, and identifying high energy-consuming targets, which can help
optimize energy efficiency. The current dataset consists of energy profiles for 768 buildings
and seems insufficient for deep learning models. Enlarging the dataset and improving the
performance of deep learning models is also intended as future work.
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