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New energy vehicles (NEVs) has emerged as a sustainable alternative to conventional vehicles, 
however have unresolved reliability challenges due to their complex electronic systems and varying 
operating conditions. Faults in drivetrain and battery systems, occurring at rates up to 12% annually, 
present significant barriers to the widespread adoption of NEVs. This study proposes a robust fault 
detection framework that applies multiple machine learning and deep learning models to address 
these challenges. The research utilizes the benchmark NEV fault diagnosis dataset, which contains 
real-world sensor data from NEVs. The models tested include logistic regression, passive-aggressive 
classifier, ridge classifier, perceptron, gated recurrent unit (GRU), convolutional neural network, and 
artificial neural network. The proposed ensemble GRULogX model stands out among the implemented 
model, leveraging GRU with logistic regression and other key classifiers, and achieved 99% accuracy, 
demonstrating high precision and recall. Cross-validation and hyperparameter optimization were 
adopted to further ensure the model’s generalizability and reliability. This research enhances the fault 
detection capabilities of NEVs, thereby improving their reliability and supporting the wider adoption of 
clean energy transportation solutions.
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The transport industry has been under a significant paradigm shift due to the necessity of reducing the carbon 
footprint and transition to cleaner and more sustainable energy sources1. The increasing environmental 
concerns, combined with the exhaustion of fossil fuels, have fueled the demand for alternative energy solutions 
in the transportation sector2. New energy vehicles (NEVs), such as electric vehicles (EVs), plug-in hybrid 
electric vehicles (PHEVs), and hydrogen fuel cell vehicles (FCVs), are increasingly becoming prime alternatives 
to traditional gasoline-powered cars1,2.

NEVs are regarded as a promising solution to reduce the environmental impact of traditional vehicles, 
primarily by lowering carbon dioxide (CO2) emissions. New estimates suggest that NEVs might reduce average 
car CO2 emissions by up to 40%, significantly helping urban air and nations reach goals such as climate targets. 
Cutting emissions really matters, especially in cities where traffic pollution poses big health risks. Despite the 
promising benefits of NEVs, their adoption is not without challenges. The far-reaching utilisation of NEVs is still 
hindered by a few specialised and viable barriers1,2.

Among the most significant challenges are the anxiety of the battery distribution area, the degradation 
of performance over time, long load times, and incomplete load infrastructure, which exist in many areas, 
especially in developing countries3. Studies have shown that, although NEV battery technology has increased 
significantly in recent years, the lack of charging infrastructure remains a significant obstacle, especially in rural 
or underdeveloped areas. Additional issues of high purchase prices of NEV’s high, long-term performance 
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requirement of battery, and energy efficiency continue to deter potential buyers. Addressing these challenges 
requires advanced technologies that can improve NEVs’ efficiency, reliability, and user experience3.

Machine learning (ML) has become an effective tool to solve a wide range of problems in different industries, 
including transport. By analyzing large amount of sensory data collected from NEVs during operation, ML 
algorithms can provide valuable information that allows for predictive maintenance, optimization of battery 
health management, and supports real-time energy consumption2. This process can significantly improve the 
overall performance and reliability of NEVs, solving the main problems such as battery degradation, energy 
consumption, and fault detection.

ML models are increasingly used to predict the degradation of the battery and detect faults in NEVs which 
supports manufacturers and operators to take necessary precautions. This can help reduce expensive repairs, 
minimize the time of death, and improve the reliability of the vehicle4. In addition, the use of ML to manage the 
actual energy is very important to optimize the discharge cycle and battery, thus improving its life expectancy 
and performance. Algorithms controlling various functions of autonomous systems are also integral to the 
future of NEVs. Often, such systems utilize ML for object detection, lane recognition, and decision-making 
tasks in dynamic traffic environments, all of which contribute to the safety and operational efficiency of NEVs.

Fault detection in NEVs has become a critical task and several prominent works have been conduction. The 
study5 offered a robust framework for detecting faults in NEVs, utilizing ML and deep learning (DL) models. 
Many models were assessed, including traditional logistic regression, passive classification, ridge classifier, and 
perceptron, as well as more advanced models like gated recurrence units (GRU), an architecture that uses gating 
mechanisms to efficiently capture dependencies in sequential data, convolutional neural networks (CNNs) and 
artificial neural network (ANN)4. Research utilizing the fault diagnostic dataset, providing real sensor data 
collected from NEVs. This ensures that the results of this study are directly applicable to the real world. In this 
context, the primary contributions of this research are:

•	 A comprehensive fault detection framework is proposed, utilizing both traditional ML models and advanced 
deep learning architectures to address reliability challenges in NEVs.

•	 Introduced a novel ensemble GRULogX model that integrates GRU and logistic regression, achieving high 
accuracy on real-world NEV fault diagnosis data.

•	 Validated the proposed model using real-world sensor data from the Kaggle NEV fault diagnosis dataset, 
demonstrating its effectiveness in practical environments.

•	 Improved model robustness and generalizability through cross-validation and hyperparameter optimization, 
with strong performance on time-series NEV sensor data.

This paper is structured as follows: Section 2 reviews and discusses the related research on the application of 
ML and DL in NEVs, highlighting the advancements in fault detection and predictive maintenance. Section 3 
shows the methodology used in the study, detailing the dataset preparation, model development, and evaluation 
process. Section  4 discusses the experimental results and provides an analysis of the model’s performance. 
Finally, Section 5 concludes the paper, summarizing the findings and offering suggestions for future research 
directions to further improve the performance and reliability of NEVs.

Related work
The NEVs sector has drawn much interest recently because of their capacity to somewhat reduce the 
environmental consequences of traditional transportation6. Many studies have investigated different aspects of 
NEV technology, including battery management, adoption patterns, fault detection, and environmental impacts. 
Emphasizing each study’s methodologies, datasets, and conclusions, the next part condenses significant research 
that has advanced our knowledge of NEVs. These studies provide insightful suggestions that guide present 
research and show how to improve NEV acceptance, performance, and safety.

The study7 dealt with serious problems with battery security (vehicles of electric vehicles) by developing a 
method for diagnosing data control errors for battery packs. Beijing’s surveillance and electric vehicle service 
centres were monitored and analyzed for real-time operational data from the fleet, focusing on the 91-cell 
battery pack (all 10 seconds) EV model. To record larger patterns, they also train a three-layer neural network 
(Architecture 1 10) with aggregated fleet data, combining vehicle diagnostics with big data trends. The most 
important findings include classifying random errors, such as manufacturing errors and accidents, for two types 
of failure, as well as the ability to find possible locations within the package. Surprisingly, statistical analysis 
showed that cells on the front and bottom of the battery tend to break faster than other cells. This indicates that 
further investigation of various batteries and operating conditions is needed to ensure generalization.

The author examined the impact of China’s NEV guidelines through the lens of consumer heterogeneity and 
addressed the issue of inconsistent political effectiveness in demographic segments2. This study used a large 
dataset for consumer surveys in various cities in China, and used multivariate regression in interaction terms, 
specifically to examine how individual characteristics (age, income, etc.) moderated the relationship between 
political incentives and NEV acceptance. The analysis showed that financial subsidies and licensing privileges 
had a positive effect on acceptance overall, but their effectiveness was significantly different among consumer 
groups. For example, environmental policies were equally appreciated by both young and older people. On the 
other hand, older consumers showed greater sensitivity to direct financial incentives. A major contribution of 
to this study is to highlight the need for tailor-made political design based on consumer profiles. However, the 
study was limited by its cross-sectional features and reliance on self-reported data that may not be captured over 
time. The authors recommended the integration of longitudinal studies with behavioral tracking data to improve 
future analyses.
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The critical issue of early error detection in NEVs’ lithium-ion batteries was investigated by8 to improve 
operational safety and reliability. The author proposed a new diagnostic approach using a combination of 
statistical process control techniques (SPC) and support vector machines (SVMs) to identify and classify 
abnormal battery behavior. They used actual data records collected by the battery management system (BMS) 
that included parameters such as voltage, electricity, temperature, and load/load cycles. The hybrid approach 
achieved high error detection accuracy and significantly exceeded traditional threshold value methods. One 
of the most important outcomes was the system’s ability to recognize errors early on before escalating to a 
serious failure, reducing maintenance costs and security risks. However, the authors discover limitations on 
the treatment of unstructured or missing data, and this may degrade the model’s capabilities when exposed 
to unknown operating conditions. They recommended expanding the data records with adaptive learning 
mechanisms to improve the generalization of future research.

In Ref.5, the challenge of accurate rejection diagnosis of new energy vehicles (NEVs) under various operating 
conditions is tackled by proposing deep neural network models. The main issue mentioned was the poor 
generalization of traditional diagnostic models when applied to new domains with limited data. To overcome 
this, the authors used a transfer learning approach that used knowledge from well-marked source domains and 
adapted to target domains with sparse error names. By integrating CNNs and domain tuning techniques, the 
frame significantly improved diagnostic performance and achieved greater accuracy compared to traditional 
deep learning methods. The authors proposed that future work should examine the architecture of light and 
real-time depreciation strategies.

A comprehensive review of eco-efficiency assessments of NEVs using life cycle analysis (LCA) is done in Ref.9. 
The authors compiled and compared several LCA data records, focusing on battery-electric vehicles (BEVs) and 
plug-in hybrids. The review highlighted key indicators such as greenhouse gas emissions, energy consumption, 
and the use of materials throughout the vehicle lifecycle. These benefits are partly advantageous due to battery 
production and the emissions generated at the end of the day. A key limitation was the lack of standardized 
LCA methods and real-time data integration, which limited the orientation of cross-study comparisons and 
guidelines. The authors sought a harmonized framework and dynamic LCA model to better inform sustainable 
transportation guidelines and improvements in NEV designs.

Characteristics and emerging trends of NEVs were examined in Ref.10 using data from the Web of Science 
database. The research aims to map developments in this field, identify influential publications, and identify 
dominant research topics. By using bibliographic technology and visualization instruments such as Citespace, 
they analyzed over 1,000 articles over several years. This study focuses on battery safety, error diagnosis, and 
thermal management, with China and the US serving as key participants. The study also highlighted the 
increasing use of intelligent diagnostic techniques and interdisciplinary approaches. However, a significant 
limitation was that it relied solely on bibliographic data, which could overlook qualitative knowledge and new, 
unpublished developments.

Technological gaps in NEV concerning users expectations are investigated in Ref.3. The study integrated 
the results of various empirical articles, political documents, and research foundations in which data records 
were identified, focused on public opinion, market trends, and demographic behavior. Although the authors did 
not use direct methods for ML, they categorized the influential factors of economic incentives, infrastructure, 
environmental perception, and social norms motivation. A key outcome of the review was the identification of 
political effectiveness that relies heavily on consumer demographics and perceptions. However, the limitation 
of this study lies in its reliance on existing literature without quantitative validation or predictive modeling. This 
indicates the need for future ML-controlled mood analysis or predictions based on real-time behavioral data.

The study11 examined the impact of consumer knowledge on the adoption of EVs in an emerging market 
context focused on India. The study addresses the issue of low EV records despite increased environmental 
concerns and state incentives. Using survey data collected by potential EV users, the authors used structural 
equation modeling (SEM) to analyze the relationship between EV knowledge, perceived benefits, and acceptance 
intentions. The results showed that consumer awareness significantly improves perceptual value and thus 
positively influences the likelihood of adoption. However, the study also highlighted important limitations, 
such as symptoms of knowledge, inadequate charging infrastructure, and the need for clearer communication 
regarding the benefits of EVs. Although no ML techniques were used, statistical modeling provided robust 
insight into behavioral predictors. The authors propose political interventions and awareness campaigns to close 
information gaps and accelerate the adoption of EVs.

The authors12 provide an in-depth overview of environmental and operation variability (EOV) compensation. 
The study emphasizes the importance of adaptive modeling, reference-free methods, and robust feature 
extraction to ensure consistent fault recognition performance across diverse operational conditions. Building 
on these insights, this work aims to develop and validate an approach that maintains accuracy under variable 
environmental influences.

By reviewing these recent articles from existing literature, the following key research gaps have been identified:

•	 Existing fault diagnosis models for NEVs predominantly rely on individual ML and DL models, with limited 
research exploring ensemble approaches to enhance accuracy and robustness.

•	 Most current models fail to account for the dynamic nature of fault progression, which could be more effec-
tively captured by advanced deep learning architectures such as GRUs and CNNs.

•	 There is a lack of integration between domain-specific knowledge and data-driven ML techniques, which is 
essential for addressing the limited availability of labelled fault data and improving the practical reliability of 
NEV fault detection systems.
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Proposed methodology
This section describes the methodology we propose for predicting the performance and reliability of NEVs. We 
provide a comprehensive discussion of the techniques used for analysis and result computation. The abstract 
workflow analysis for NEVs’ fault detection is shown in Fig. 1. Initially, the dataset consisted of numerous high-
dimensional features, making it suitable for thorough testing. To tackle this complexity, we have developed a 
new strategy to select properties that focus on maintaining only attributes that have a significant impact on NEV 
performance predictions. The selected feature set is split into two subsets: 80% in training and 20% in testing. We 
then trained and evaluated several advanced ML models. The performance of each model is evaluated based on 
invisible test data, and models that exhibit the highest accuracy are selected for further prediction and analysis 
of NEV performance13.

Dataset collection
For experimental analysis, we utilize the publicly available Kaggle Fault Diagnosis Dataset for NEVs, specifically 
curated to support fault detection in drivetrain components. The dataset contains approximately 11,000 rows of 
high-resolution sensor readings. These include parameters such as voltage, current, motor speed, temperature, 
vibration, ambient temperature, and humidity, each critical for identifying faults in key subsystems such as 
the motor, inverter, and battery. Each data entry is annotated with a fault label representing the operational 
condition of the NEV. The classification schema is outlined in Table 1.

Figure 2 shows the distribution of the samples across various classes. It shows that the ‘normal’ class has the 
highest number of samples, i.e., 5,000, while the rest of three classes have 2,000 samples each.

Data preprocessing
Data preprocessing ensures that the input data is clean, consistent, and ready for modelling. In this case, all 
sensor values and performance specifications are systematically checked for missing values to ensure that there 
are no distortions or calculation errors in the modelling process. Therefore, the dataset is fully proven. There is 
no need to credit or delete records. Continuous variables are normalized to the standard range, and outliers are 
recognized and processed accordingly. These steps in preprocessing create a solid foundation to follow and select 
modelled properties. The number of missing values in each feature is calculated as:

	
Missing Value Count =

n∑
i=1

[yi = null]� (1)

where yi represents value of the feature, and n is total number of instances.
To protect against information leakage, all preprocessing steps were performed strictly within the training 

folds of data. Particularly, the dataset was split into training (80%, 8,800 samples) and test (20%, 2,200 samples) 
subsets using stratified sampling to protect the original class proportions. Feature scaling was then used only on 
the training set using the MinMax normalization techniques, defined as:

Label Fault description

0 Normal operational state

1 Motor fault

2 Inverter fault

3 Battery fault

Table 1.  Fault label definitions in NEV dataset.

 

Fig. 1.  Abstract workflow analysis for NEVs fault detection.
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x′ = x − xmin

xmax − xmin
,� (2)

where x shows the original feature value, and xmin and xmax denote the minimum and maximum values of that 
feature within the training data. The same fitted transformation was subsequently applied to the test set, ensuring 
that no information from the test distribution influenced model training or variable estimation.

Feature engineering
Feature engineering involves the correlation analysis of features to determine the best features to predict NEV 
performance. A correlation heatmap is obtained which depicts the linear relationships among sensor variables 
and performance labels. The predictive accuracy and efficiency of ML models are thereby enhanced by feature 
selection, which concentrates on these highly correlated features. This ensures that the models focus on the most 
informative signals, which is critical for an accurate NEV performance diagnosis14.

Dataset splitting
For evaluating performance of the models, the dataset was divided into a training set of 80% and an independent 
test set of 20% using stratified sampling to protect class proportion. The test set was set aside and used only 
for final evaluation. Within the training set, stratified 10-fold cross-validation was employed to normalize and 
validate the models. For each fold, 90% of the training subsets were used for training and 10% for validation. 
Data preprocessing (normalization and feature scaling) was performed sequentially within each fold to prevent 
target leakage. Model accuracy, confusion matrix, and classification metrics were reported on the independent 
test set, while the average and standard deviation of cross-validation accuracy were used to assess the robustness 
of the models. This approach ensured that the test set remained untouched during model development, while 
cross-validation within the training set was used exclusively for model selection and hyper-parameter training15.

Models used in study
Data structures are used to reduce and improve model prediction reliability. Recently, ML has been used to 
predict the performance and reliability of NEVs. This approach applies advanced ML and DL models for the 
precise and timely assessment of NEV performance indicators. An ML-based system can assist engineers and 
stakeholders by providing actionable insights for NEV performance optimization and fault detection. Stepwise 
workflow analysis of applied models in NEVs’ fault detection is shown in Figure 3.

Logistic regression
A frequently used method for tasks involving both binary and multiclass categorization is logistic regression 
(LR). It primarily helps to forecast battery condition, detecting whether a battery is functioning optimally or 
requires maintenance, within the context of NEVs. Voltage, temperature, and charging history are among the 
characteristics the model uses. Using the sigmoid function, the model turns these characteristics into probability 
estimates between 0 and 1. This probability is then applied to provide unambiguous judgments on battery 
performance16.

	
P (y = 1 | X) = 1

1 + e−(w·X+b) � (3)

where,

•	 P (y = 1 | X) is the probability of the positive class.
•	 X  is the feature vector.
•	 w is the weight vector.

Fig. 2.  The NEV faults prediction analysis’s target distribution analysis.
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•	 b is the bias term.
•	 e is the base of the natural logarithm.

Ridge classifier
Building on LR, the Ridge classifier uses L2 regularization to reduce overfitting, especially when input features 
are highly correlated, therefore improving performance and predicting demand for charging stations, where 
environmental and user behavior data are occasionally connected, benefits especially from this. Penalizing large 
coefficients, Ridge guarantees more consistent predictions even with overlapping or noisy data. For managing 
large-dimensional datasets, which are typical in NEV applications, the Ridge classifier is highly successful17,18.

	 Yi = w · Xi + b� (4)

where,

•	 Yi is the actual label.
•	 Xi is the input feature vector.
•	 w is the weight vector.
•	 b is the bias term.
•	 λ is the regularization parameter that controls the penalty on large weights.

Perceptron
Based on sensor data such as voltage, temperature, and electricity, a perceptron can classify NEV fault types. NEV 
systems are built in real time and benefit from their simplicity and inexpensive computing costs. It is fighting 
nonlinear data that could limit performance in more sophisticated cases, including multifactorial errors. Despite 
its drawbacks, the Perceptron remains a vital starting model for benchmarking in error recognition systems1.

The Perceptron formula is given by:

Fig. 3.  Stepwise workflow analysis of applied models in NEVs’ fault detection.
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y = f

(
n∑

i=1

wixi + b

)
� (5)

where xi is input features, wi represents weights, b is bias, f  is activation function (commonly the step function 
or sign function), and y is output prediction (class label).

Passive aggressive classifier
An online learning algorithm is particularly suitable for real-time classification tasks, such as NEV error 
detection. In contrast to traditional batch learning algorithms, passive aggressive (PA) works gradually and 
only adapts when the model makes incorrect predictions. The “passive” aspect refers to the model remaining 
unchanged when the prediction is correct, while “aggressive” signifies rapid weight adjustment when the model 
is incorrect15. Hinge loss is calculated using.

	 L(w; (xi, yi)) = max(0, 1 − yi · (w · xi))� (6)

The weight update for the PA classifier is done using.

	
wt+1 = wt + τ · yi · xi where τ = max(0, 1 − yi · (w · xi))

∥xi∥2 + λ
� (7)

Gated recurrent unit
The GRU is designed to efficiently capture temporal dependencies in sequential data19. In this study, the GRU 
model is applied to structured sequences of sensor readings, where raw features are split into fixed-length 
windows of 10 times steps with a 50% overlap to preserve continuity. Each input sequence thus comprised 
multivariate feature channels such as voltage, current, and temperature aligned along the feature dimensions, 
while the corresponding label is subjected to the final observation within each window to maintain causal 
consistency. Table 2 presents the architecture of the GRU network employed in this study. This architecture 
is especially suited for real-time NEV fault prediction, enabling early detection of plug-in failure and battery 
degradation under continuous monitoring scenarios.

Convolutional neural network
In NEVs, CNNS plays a vital role in thermal anomalies. These models analyze the heat distribution patterns of 
battery cells by processing thermal images and identifying important issues such as overheating and structural 
errors. CNN utilizes folding layers to automatically identify local patterns in images, making it highly efficient 
for detecting anomalies in thermal data. By capturing these anomalies, CNN prevents catastrophic battery 
failures and allows early intervention to extend battery life, ultimately20. The data are first transformed into 
two-dimensional metrics using a time window of 10 samples with 50% overlap, where the temporal dimension 
showed a sequence of sensor readings and the positional dimension matched the set of input features. Each 
segment was marked according to the fault class occurring within that specific time interval. One-dimensional 
twist layers are then applied along the temporal axis to check localized transition and fault signature, followed 
by max pooling layers to compress the learned description while preserving key features. Table 3 shows the 
architecture that begins with one-dimensional convolutional layers. This hierarchical design enables the CNN to 
automatically identify critical fault patterns from raw input sequences.

Artificial neural network
A versatile model of ANNs is an excellent learner of complex patterns and relationships in data. ANN is often 
used to optimize energy consumption in NEVs. ANNS can adjust the car’s settings to minimise energy loss by 
predicting energy consumption and analysing driving behaviour, terrain conditions, and battery efficiency. This 
results in better driving range, which is especially vital for NEVs when resolving range anxiety. By nonlinear 
transforms, ANNs process data using multiple layers of interconnected nodes, thereby modelling sophisticated 
interactions among input variables17,21. The neural network is represented by

Layer (Type) Output Shape Parameters

GRU (gru_12) (None, 10, 128) 52,608

Dropout (dropout_25) (None, 10, 128) 0

GRU (gru_13) (None, 64) 37,248

Dropout (dropout_26) (None, 64) 0

Dense (dense_44) (None, 32) 2,080

Dense (dense_45) (None, 4) 132

Total Parameters 92,068 (359.64 KB)

Trainable Parameters 92,068 (359.64 KB)

Non-trainable Parameters 0 (0.00 B)

Table 2.  Analysis of GRU model architecture for fault detection in NEVs.
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y = f

(
n∑

i=1

wixi + b

)
� (8)

Where,

•	 xi: input features
•	 wi: corresponding weights
•	 b: bias term
•	 f : activation function
•	 y: output of the neuron

The ANN model used in this study comprises a stack of fully connected (Dense) layers interleaved with Dropout 
layers to reduce overfitting, as shown in Table 4. The network begins with an input Dense layer of 512 neurons, 
followed by successive layers of decreasing size, 256, 128, 64, and 32 neurons, ultimately ending with a single-
neuron output layer suitable for binary classification. The total number of trainable parameters is 178,689, 
and no non-trainable parameters are present. The architecture is lightweight, yet its shallow depth and lack of 
recurrent or convolutional structure contribute to its lower performance compared to GRU and CNN models.

Proposed ensemble GRULogX approach
The research proposes a new ensemble method, GRULogX, that combines GRU and LR and other prominent 
classifiers to improve fault detection in NEVs. The GRU itself is best suited to handle sequential data provided 
by the NEV’s sensors, capturing temporal dependencies and patterns within drivetrain and battery subsystems. 
Logistic Regression is utilized next to improve fault classification through a probabilistic framework for 
classifying fault occurrences. Through synergistic integration, the strengths of each model, both in terms of 
fault detection under varying conditions and generalization and reliability, are ensured. This approach not 
only enhances detection accuracy level, but also shows superior precision, recall, and attains a remarkable 99% 
fault detection accuracy. The approach uses cross-validation and hyperparameter techniques in its ensemble 

Layer (Type) Output Shape Parameters

Dense (dense_10) (None, 512) 4,096

Dropout (dropout_4) (None, 512) 0

Dense (dense_11) (None, 256) 131,328

Dropout (dropout_5) (None, 256) 0

Dense (dense_12) (None, 128) 32,896

Dense (dense_13) (None, 64) 8,256

Dense (dense_14) (None, 32) 2,080

Dense (dense_15) (None, 1) 33

Total Parameters - 178,689 (698.00 KB)

Trainable Parameters - 178,689

Non-trainable Parameters - 0

Table 4.  Layer-wise architecture of the ANN model.

 

Layer (Type) Output Shape Parameters

Conv1D (None, 10, 64) 1,408

Batch Normalization (None, 10, 64) 256

Max Pooling1D (None, 5, 64) 0

Conv1D (None, 5, 128) 24,704

Batch Normalization (None, 5, 128) 512

Max Pooling1D (None, 2, 128) 0

Flatten (None, 256) 0

Dense (None, 128) 32,896

Dropout (None, 128) 0

Dense (Output Layer) (None, 4) 516

Total Parameters 60,292

Trainable Parameters 59,908

Non-trainable Parameters 384

Table 3.  Analysis of CNN model architecture for fault detection in NEVs.
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methodology, making it adaptable to test data and ensuring reliability for practical deployment as illustrated in 
Figure 4.

The GRU model captures sequential patterns in NEV sensor data. It uses the following equations for updating 
its states:

	 zt = σ(Wz · [ht−1, xt] + bz) � (9)

	 rt = σ(Wr · [ht−1, xt] + br) � (10)

	 h̃t = tanh(Wh · [rt · ht−1, xt] + bh) � (11)

	 ht = (1 − zt) · h̃t + zt · ht−1 � (12)

Where,

•	 zt is the update gate controlling the influence of previous hidden states.
•	 rt is the reset gate determining how much of the previous state should be forgotten.
•	 h̃t is the candidate hidden state, and ht is the final hidden state at each time step.

After the GRU outputs the sequence representation, it is passed to the Logistic Regression classifier for fault 
prediction:

	
P (y = 1|X) = 1

1 + e−(W ·X+b) � (13)

Where,

•	 P (y = 1|X) is the probability of a fault occurring.
•	 X  is the feature vector obtained from the GRUs output.
•	 W  is the weight vector, and b is the bias term.

Fig. 4.  Proposed architecture of novel ensemble GRULogX.
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The final fault prediction is derived from the ensemble of GRU and Logistic Regression, along with other 
classifiers such as Perceptron and Ridge Classifier. The ensemble combines its outputs using a weighted sum:

	
ffinal = Softmax

(
n∑

i=1

αifi

)
� (14)

Where,

•	 fi represents the output of each classifier.
•	 αi are the weights assigned to each classifier’s prediction.
•	 The final output ffinal is passed through a Softmax function to obtain a probability between 0, 1,2, and 3 

representing the likelihood of a fault.

The proposed GRULogX ensemble is implemented using a stratified 5-fold cross-validation scheme. Where 
each fold trained the base learners, GRU, and LR independently on the training subset and evaluated them on a 
distinct validation subset. The outputs of the two base models were combined through a probabilistic averaging 
strategy, defined as:

	
Pensemble = 1

2 (PGRU + PLR)� (15)

where PGRU and PLR show the predicted class probabilities obtained from the GRU and LR models.
The GRU model utilized two stacked recurrent layers with 128 and 64 hidden units, and dropout regularization 

of 0.2 to prevent overfitting. The Adam optimizer with a learning rate of 0.001 and categorical cross-entropy loss 
is used for training. Logistic regression with L2 regularization and a maximum of 1000 iterations is employed as 
a fast linear classifier for probabilistic learning.

By incorporating these models, the GRULogX ensemble significantly enhances the accuracy and reliability 
of fault detection systems for NEVs, paving the way for more efficient and widespread adoption of clean energy 
vehicles.

Model hyperparameter settings
Appropriate hyperparameter selection is very important to obtain the best performance from ML and DL 
models. Selection of suitable hyperparameters can improve accuracy and recall performance, especially when 
dealing with complex data records, such as those from NEVs5,15. Each model used in this study, including logistic 
regression, passive-aggressive classifier, ridge classifier, perceptron, GRU, CNN, and ANN, must be carefully 
configured and tuned. These hyperparameters, such as the number of iterations, control strength, and activation 
functions, affect the learning dynamics and ultimately the ability of the model to generalize22,23. The following 
Table 5 summarizes the hyperparameter settings used in this study for each model.

Model’s evaluation criteria
To evaluate the performance of the models, several key performance indicators are used, including R2, RMSE, 
and MSE22. The metric root mean squared error (RMSE) measures the inconsistency between predictions and 
actual values, providing a comprehensive indication of the model’s accuracy. The mean squared error (MSE) 
measures the average difference between the predicted and actual values, providing a detailed representation 
of the model’s performance. The coefficient of determination (R2) provides insight into the dependency 
of dependent variables. Accuracy metric represents the ratio of correct predictions to the total number of 
predictions. Precision measures the number of accurate positive predictions made by the model. Recall refers 
to the ratio of actual positive cases to all the actual positive cases. F1 score represents the harmonic mean of 
precision and recall, offering a balanced evaluation of both metrics.

These metrics are especially valuable in classification tasks, such as predicting NEV performance, where both 
precision and recall are equally crucial for reliable and accurate results24.

Technique Hyperparameters

Logistic Regression random_state: 0, max_iter: 1000

Passive Aggressive Classifier C: 0.5, max_iter: 1000, early_stopping: True, n_iter_no_change: 5, random_state: 0

Ridge Classifier alpha: 1.0, solver: ’auto’, tol: 1e-3

Perceptron penalty: ’l2’, alpha: 0.0001, max_iter: 1000, tol: 1e-3, random_state: 0

GRU Model GRU Layer 1: units=128, activation=’relu’, dropout=0.2, GRU Layer 2: units=64, activation=’relu’, dropout=0.2, Dense 
Layer: units=32, Output Layer: units= 4, activation=’softmax’

CNN Model Conv1D Layer 1: filters=256, kernel_size=2, activation=’relu’, MaxPooling1D: pool_size=2, Conv1D Layer 2: filters=128, 
kernel_size=2, Dense Layer: units=32, Output Layer: units=4, activation=’softmax’

ANN Model Dense Layer 1: units=512, activation=’relu’, dropout=0.3, Dense Layer 2: units=256, activation=’relu’, dropout=0.3, Dense 
Layer 3: units=128, Dense Layer 4: units=64, Dense Layer 5: units=32, Output Layer: units=4, activation=’softmax’

Table 5.  Analysis of model hyperparameter settings for fault detection in NEVs.
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Results and discussion
This section provides a detailed analysis of the application of ML to predict errors in NEVs. We will thoroughly 
examine the empirical findings of the research and provide a detailed explanation of their effects. Our results 
demonstrate the accuracy and efficiency of each method, measured with different performance parameters. 
This study highlights the potential of ML models to improve error detection, improve vehicle reliability, and 
introduce clean energy transport solutions.

Data exploration
This study examined the relationships between several variables in the dataset using an in-depth correlation 
matrix analysis. Understanding how components work together benefits from this approach. By analyzing 
the correlations, we can recognize patterns that are very important for predicting NEVs. Correlation matrices 
provide information on the orientation and intensity of these interactions, which can lead to the selection and 
determination of characteristics for modeling. The correlation matrix displays linear relationships between 
various characteristics within a data record, as illustrated in Fig. 5. Each cell in the matrix reflects the connection 
between the two properties. Red colours refer to positive correlation. Blue suggests negative. Engine speed (rpm) 
and error labels show a robust positive correlation of 0.55. This means that the probability of error increases as 
engine speed increases. Conversely, the voltage (v) shows a significant negative correlation of -0.84 with the error 
label. This indicates that a higher probability of error is associated with a drop in voltage levels. Understanding 
the characteristic dependencies of NEV error detection and improvements in predictive models depends on 
these observations from the correlation matrix24.

Experimental settings
Using Python 3.0, we conducted our studies on forecasting NEV performance utilizing sophisticated ML 
techniques. Google Colab, an open-source platform with a GPU backend, 13 GB of RAM, and 90 GB of storage, 
enabled us to undertake these investigations. Runtime computation, accuracy, precision, recall, and F1 score 
were used to evaluate the performance of our NEV prediction model24.

Performance analysis of applied machine learning models
This section describes the evaluation of services to predict errors in NEVs with all characteristics. All ML models 
are tested based on entire dataset. The performance of the error detection model is assessed by accuracy, accuracy, 
recall, and F1 score. These metrics are important to recognize how each model can reliably categorize faulty 
and normal observations. The results show that ML methods for classification accuracy and other performance 
parameters are superior to deep learning methods24. The models being evaluated are logistic regression, passive-
aggressive classifier, ridge classifier, and perceptron, as shown in Table 6. In all categories, Logistic Regression 
provided the best performance, achieving a precision, recall, F1 score, and accuracy of 0.98. Passive Aggressive 
Classifier performed immediately after with steady results of 0.96 precision, recall, F1 score, and 0.96 accuracy. 
Ridge Classifier slightly lagged with 0.94 accuracy, while the perceptron model significantly underperformed, 

Fig. 5.  Feature correlation heatmap showing the correlation between different sensor variables and the fault 
label.
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receiving metrics of 0.87, 0.85, 0.83, and 0.85 in precision, recall, F1 score, and accuracy, respectively. These 
results emphasize the superior performance of traditional ML models over DL methods, especially for this 
dataset.

The confusion matrices for four classification models, LR, PA classifier, Ridge classifier, and perceptron, 
demonstrate varying levels of performance across four target classes as shown in Figure  6. LR achieved the 
highest accuracy with minimal misclassifications, particularly strong in predicting class 0 and class 1. The PA 
classifier model showed comparable performance but exhibited more confusion between class 0 and class 2. 
Ridge classifier performed well overall but struggled with class 2, showing frequent misclassifications into class 
3. The perceptron model exhibited the weakest performance, particularly for classes 1 and 3, with significant 
prediction errors. Overall, LR proved to be the most reliable model for multi-class classification in this study.

Performance of applied deep learning models
Evaluation of the applied deep learning models, GRU, CNN, and ANN, revealed that the GRU model 
outperformed the others with an accuracy of 98%, and high precision, recall, and F1-score values as shown in 
Table 7. The CNN model also demonstrated strong performance with consistent metrics across all evaluation 
parameters, achieving 97% accuracy. In contrast, the ANN model exhibited significantly lower performance, 
with an accuracy of only 28% and notably weak precision, recall, and F1 score. These results indicate that 
recurrent architectures, such as GRU, are highly effective for sequence-based classification tasks in this context. 
At the same time, ANN lacks the capacity to model complex patterns in the data.

Figure 7 presents the confusion matrices for three deep learning models, GRU, CNN, and ANN, applied 
to predict faults in NEVs. Each matrix compares the true class labels with the predicted labels for a multi-
class classification problem involving four classes. The GRU model exhibits strong performance, with minimal 
misclassifications, particularly for classes 0 and 1, and very few errors for classes 2 and 3. The CNN model 
performs similarly well, with some misclassifications occurring in class 0 and class 3, but it still successfully 
predicts the majority of instances. The ANN model demonstrates solid accuracy for classes 0 and 1, although 
some class 2 instances are misclassified as class 3, indicating areas where the model can be improved. These 
confusion matrices provide insights into each model’s ability to distinguish between classes and highlight areas 
that could benefit from further refinement.

Result of proposed GRULogX approach
The performance of the proposed GRULogX approach was evaluated across multiple fault detection categories. 
The results, which include precision, recall, and F1 scores, are summarised in Table 8. These metrics provide an 
indication of the model’s effectiveness in identifying different fault classes and its overall performance.

The confusion matrix shown in Fig. 8 illustrates the excellent classification performance of the proposed 
GRULogX model. The model achieved perfect predictions for Classes 0 and 1, with zero misclassifications. 
Class 2 was accurately predicted with 390 correct classifications, and only nine samples were misclassified as 
class 3. Similarly, class 3 had 384 correct predictions with minimal confusion 14 samples predicted as class 2 and 
one as class 0. These results reflect high precision, recall, and F1 score, confirming the model’s effectiveness in 
multiclass prediction tasks.

Method Accuracy Target Class Precision Recall F1 Score

Logistic Regression 0.98

0 0.99 1.00 0.99

1 1.00 0.99 1.00

2 0.93 0.95 0.94

3 0.96 0.93 0.95

Average 0.98 0.98 0.98

Passive Aggressive 0.96

0 0.97 0.98 0.98

1 0.99 0.99 0.99

2 0.88 0.95 0.91

3 0.98 0.89 0.93

Average 0.96 0.96 0.96

Ridge Classifier 0.93

0 0.93 0.99 0.96

1 0.97 0.97 0.97

2 0.97 0.77 0.86

3 0.90 0.92 0.91

Average 0.94 0.94 0.93

Perceptron 0.84

0 0.78 1.00 0.88

1 0.93 0.88 0.90

2 0.97 0.40 0.56

3 0.94 0.87 0.91

Average 0.87 0.85 0.83

Table 6.  Performance comparison of applied ML models.
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Method Accuracy Target Class Precision Recall F1 score

GRU 0.98

0 1.00 1.00 1.00

1 1.00 1.00 1.00

2 0.95 0.97 1.00

3 0.98 0.95 0.96

Average 0.98 0.98 0.98

CNN 0.97

0 0.99 1.00 0.99

1 0.99 0.98 0.99

2 0.93 0.99 0.96

3 0.98 0.91 0.94

Average 0.97 0.97 0.97

ANN 0.28

0 0.96 0.22 0.36

1 0.20 0.98 0.34

2 0.00 0.00 0.00

3 0.00 0.00 0.00

Average 0.47 0.28 0.22

Table 7.  Performance comparison of deep learning models.

 

Fig. 6.  Confusion matrices of applied ML models, (a) Logistic regression, (b) Passive aggressive, (c) Ridge 
classifier, and (d) Perceptron.
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Figure 9 presents a histogram comparison of various ML models based on four key performance metrics: 
accuracy, precision, recall, and F1 score. Notably, the GRULogX ensemble model demonstrates superior 
performance across all metrics, achieving the highest accuracy, precision, recall, and F1 score, thereby 
outperforming the other evaluated models.

Figure 10 presents the Receiver Operating Characteristic (ROC) curves for the applied ML and DL models, 
consisting of LR, Perceptron, PA, and the proposed GRULogX ensemble model. To ensure a fair evaluation 
across the multi-class fault detection problem, the ROC curves were determined using macro-averaging, where 
the true positive rate (TPR) and false positive rate (FPR) are independently averaged over all fault categories. 
This technique treats each class equally, regardless of its sample size, giving an extensive reflection of model 
generalization across different types of faults.

As illustrated, all models showed strong classification performance. However, the GRULogX ensemble 
achieves a nearly perfect ROC curve with an AUC of 0.999, highlighting its superior ability to differentiate 
between different fault types in new energy vehicles. This consequence validates the model’s robustness in 

Model Accuracy Target Class Precision Recall F1 score

GRULogX 0.99

0 1.00 1.00 1.00

1 1.00 1.00 1.00

2 0.98 0.98 0.98

3 0.98 0.97 0.98

Average 0.99 0.99 0.99

Table 8.  Performance metrics for GRULogX fault detection.

 

Fig. 7.  Confusion matrices of DL models, (a) Gated recurrent unit, (b) Convolutional neural network and (c) 
Artificial neural network.
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handling complex temporal dependencies and sequential patterns of sensor data. The macro-averaged ROC 
indicates that this performance is consistent across all fault categories rather than being dominated by any single 
class.

Figure 11 presents a radar chart that compares the performance of different ML models. From the chart, 
it is evident that the GRULogX ensemble model demonstrates superior performance, achieving consistently 
high scores across all evaluation metrics: accuracy, precision, recall, and F1 score. LR and PA classifiers also 
perform competitively, with curves closely aligned and exhibiting strong results. This radar chart provides a 
comprehensive visual comparison, effectively highlighting the models’ strengths and areas needing improvement, 
with GRULogX clearly standing out as the most robust model.

K-fold cross validation analysis
K-fold cross-validation to assess the performance of each applied method. Cross-validation analysis is based on 
K-fold accuracy and standard deviation. The data records for the selected function were split into 10 wrinkles 
for evaluation, providing a robust level of model output by testing its ability to generalize different subgroups of 
the model as shown in Table 9. The analysis revealed that the deep learning model exhibited poor performance 
and high standard deviation during validation, indicating greater variability and sometimes exceeding that of 
the training data. Logistics regression showed that the highest mean accuracy was 0.9756 with a low standard 
deviation of 0.0070.

The results show both high performance and stability. The passive-aggressive classifier demonstrated strong 
performance, achieving a mean accuracy of 0.9536, although its standard deviation of 0.0112 was slightly higher. 
The Ridge classifier and the perceptron achieved relatively lower accuracy, with medium accuracy of 0.9327 or 

Fig. 9.  Model performance comparison histogram for Accuracy, Precision, Recall, and F1 score.

 

Fig. 8.  Confusion matrix of the proposed GRULogX model for multiclass classification.
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0.9153 and higher standard deviations of 0.0083 or 0.0189, which indicates that the performance increased the 
variability of the power in different folds. The ensemble GRULogX approach achieved a high mean accuracy of 
0.99 with the lowest standard deviation of 0.0022. The bar diagram below shows the performance of various ML 
models related to medium accuracy and standard deviation during 10-fold cross-validation, as shown in Fig. 12.

Fig. 11.  Model performance comparison radar chart for Accuracy, Precision, Recall, and F1 score.

 

Fig. 10.  ROC curves of applied models.
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Time complexity analysis
The proposed approach, GRULogX, which is an ensemble of GRU and LR, achieves a balance between high 
accuracy and efficient computation time, as shown in Table  10. Compared to individual models, GRULogX 
demonstrates an impressive computational efficiency, with a total runtime of 330.62 seconds. In comparison, 
traditional ML models such as LR require 2.8899 seconds, PA classifier takes 0.7963 seconds, and Ridge classifier 
completes in 0.2140 seconds, while perceptron requires 0.4852 seconds. When considering DL models, GRU 
takes 156.6400 seconds, ANN training time is 145.8228 seconds, and CNN training requires 112.59 seconds. 
Despite the longer computation time, the ensemble approach of GRULogX, which leverages both the GRU 
model’s learning capability and Logistic Regression’s efficiency, results in significantly higher accuracy. Therefore, 
GRULogX strikes an optimal trade-off, offering both high accuracy and a manageable computation runtime for 
complex tasks.

Performance error analysis
In this section, the results of the evaluation of ML models are presented based on the most important performance 
metrics: MSE, RMSE, R2. These metrics were used to assess the accuracy and predictive performance of each 

Model Runtime (s)

Logistic Regression 2.8899

Passive Aggressive 0.7963

Ridge Classifier 0.2140

Perceptron 0.4852

GRU 156.6400

ANN 145.8228

CNN 112.5900

Ensemble GRULogX 330.6200

Table 10.  Computation runtime for various models.

 

Fig. 12.  K Fold cross-validation accuracy with standard deviation for various models.

 

Model Mean accuracy Standard deviation

Logistic Regression 0.9756 0.0070

Passive Aggressive 0.9536 0.0112

Ridge Classifier 0.9327 0.0083

Perceptron 0.9153 0.0189

Ensemble GRULogX 0.9900 0.0022

Table 9.  K-Fold cross validation results for machine learning models.
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model in error detection for NEVs. Table 11 presents performance metrics for each ML model evaluated in 
this study. The logistic regression model performed the best among all models, achieving the lowest MSE of 
0.056667, the lowest RMSE of 0.238048, and the highest R2 value of 0.958309. This shows that logistic regression 
provides the most accurate prediction with minimal error. On the other hand, the Ridge Classifier showed the 
best MSE and RMSE, indicating slightly poor performance compared to other models. However, since all models 
showed strong R2 values, this suggests that everything was well explained to account for the variance of the target 
variables22.

Figure  13 illustrates the differences in MSE, RMSE, and R2 for each model, with Logistic Regression 
demonstrating the best performance in terms of the lowest MSE and RMSE, as well as the highest R2.

State-of-the-art comparison
The comparison of state-of-the-art NEV fault diagnosis techniques is analyzed in Table  12. In the existing 
literature, several approaches have investigated the NEV’s fault detection using the sensor data, being utilized 
in this study. For example Ref.7 utilized statistical methods to achieve up to 85% accuracy for fault detection. 
Another work is by Li et al.8, which uses ML models for the same task and reported an accuracy of up to 88%. 
The work from Wang et al.5 is an important one and involves using transfer learning for NEVs fault detection; 
it reports a 91% accuracy. Compared to these works, the proposed approaches obtain 99% accuracy and 
outperform these works.

Discussions
The proposed GRULogX collaborative model demonstrates significant improvements in accuracy, sturdiness, 
and generalization for fault detection in new energy vehicles (NEVs). The main strength of this approach lies in 
its ability to effectively combine sequential feature extraction from the GRU with the probabilistic interpretability 
of Logistic Deterioration, providing balanced and consistent fault prediction outcomes. Compared with prior 
studies, this work presents a more comprehensive and adaptive solution to NEV fault detection.

Reference Technique Accuracy (%)
7 Statistical Methods ~85%
8 ML-based Classification ~88%
5 Transfer-based Deep Neural Network ~91%

Proposed Ensemble GRULogX Approach of GRU and LR 99%

Table 12.  Comparison of state-of-the-art approaches for NEV fault diagnosis.

 

Fig. 13.  MSE, RMSE, and R2 for applied ML models.

 

Model MSE RMSE R2 (R-squared)

Passive Aggressive 0.1215 0.3486 0.9106

Ridge Classifier 0.2285 0.4780 0.8319

Perceptron 0.1173 0.3425 0.9137

Logistic Regression 0.0567 0.2380 0.9583

Table 11.  Model evaluation criteria for NEV fault detection.

 

Scientific Reports |         (2026) 16:3899 18| https://doi.org/10.1038/s41598-025-29667-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The study7 aimed at detecting control-related data faults in battery packs using a neural network trained 
on combined fleet data. While their method achieved successful classification of certain random faults, its 
dependency on large-scale, high-frequency data limited its adaptability to dynamic environmental or operational 
conditions. In the same way,8 proposed a hybrid SPC–SVM-based diagnostic framework for early fault detection 
in lithium-ion batteries. Although their approach successfully identified abnormal behaviours at an early stage, 
it was less effective when dealing with shapeless or missing data and lacked real-time adaptability. In contrast,5 
employed a transfer learning-based deep neural network to improve fault diagnosis under varying operating 
conditions. While transfer learning enhanced generalization, the model was computationally intensive and 
required domain-specific tuning for new fault scenarios.

In contrast to the existing method, the GRULogX model addresses key limitations by integrating temporal 
learning and probabilistic decision making in a combined ensemble structure. Through probabilistic averaging 
of the GRU and Logistic Regression outputs, the model achieves improved stability, interpretability, and 
adaptability across varying EOV conditions. Additionally, the inclusion of stratified cross-validation ensures 
robust performance without overfitting to specific datasets. This hybrid ensemble framework offers a generalised, 
data-efficient, and computationally practical approach to NEV fault detection. The findings not only align with 
previous research but also advance it by presenting a validated ensemble mechanism that balances performance 
accuracy and real-time feasibility, advancing the state of the art in intelligent analytic systems for NEVs.

Conclusion and future work
This study successfully developed a robust, data-driven fault detection framework for new energy vehicles 
(NEVs) by integrating multiple machine learning and deep learning models. The proposed ensemble GRULogX 
model demonstrated good performance and achieved an accuracy of 99%, indicating high reliability in detecting 
faults within the complex drivetrain and battery systems of NEVs. By leveraging real-world sensor data and 
employing advanced cross-validation techniques, this research significantly improves fault diagnosis capabilities, 
which are crucial for enhancing the performance and safety of NEVs. The results emphasise the potential of this 
approach to reduce system failures and minimise downtime, thereby supporting the broader adoption of clean 
energy vehicles.

Future research could focus on real-time implementation and the integration of these fault detection 
models into onboard diagnostic systems within NEVs. This would facilitate continuous monitoring and enable 
immediate interventions to prevent failures. Additionally, exploring the use of hybrid models combining both 
machine learning and traditional engineering methods could further enhance the system’s ability to handle a 
wider range of fault conditions. Further work could also look into expanding the dataset to include more diverse 
operating conditions, which would increase the model’s generalization and accuracy across different types of 
NEVs.

Despite the strong performance of the proposed GRULogX ensemble model, certain limitations continue 
to exist. The dataset utilized in this study originates from a specific source, which may limit the generalizability 
of the results to other NEV types or fluctuating environmental and operational conditions. Moreover, the 
present work focuses on offline fault detection, without real-time implementation or hardware integration into 
onboard diagnostic systems. As a result, the system’s efficiency under real-world dynamic driving conditions 
has not yet been fully validated. Addressing these limitations in future work through dataset expansion, real-
time deployment, and the use of hybrid models combining both machine learning and traditional engineering 
methods will further enhance the model’s adaptability for large-scale NEVs fault detection.

Data availability
The dataset used in this study is publicly available at the following link: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​w​​i​l​l​i​a​
n​​o​l​i​v​e​i​​r​a​g​i​​b​i​n​/​​n​e​w​-​e​n​​e​r​g​y​-​v​e​h​i​c​l​e​s.
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