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Abstract: Pneumonia is one of the leading causes of death in both infants and elderly people, with
approximately 4 million deaths each year. It may be a virus, bacterial, or fungal, depending on
the contagious pathogen that damages the lung’s tiny air sacs (alveoli). Patients with underlying
disorders such as asthma, a weakened immune system, hospitalized babies, and older persons
on ventilators are all at risk, particularly if pneumonia is not detected early. Despite the existing
approaches for its diagnosis, low accuracy and efficiency require further research for more accurate
systems. This study is a similar endeavor for the detection of pneumonia by the use of X-ray
images. The dataset is preprocessed to make it suitable for transfer learning tasks. Different pre-
trained convolutional neural network (CNN) variants are utilized, including VGG16, Inception-
v3, and ResNet50. Ensembles are made by incorporating CNN with Inception-V3, VGG-16, and
ResNet50. Besides the common evaluation metrics, the performance of the pre-trained and ensemble
deep learning models is measured with Cohen’s kappa as well as the area under the curve (AUC).
Experimental results show that Inception-V3 with CNN attained the highest accuracy and recall score
of 99.29% and 99.73%, respectively.

Keywords: pneumonia; chest X-ray; ensemble learning; deep learning

1. Introduction

Pneumonia has been regarded as a leading cause of death, with 14% of deaths for chil-
dren under the age of 5 and a reported 740,180 deaths among children in 2019 [1]. Symptoms
include a vigorous or dry cough, a high-grade fever with cramps, rapid breathing, shortness
of breath, chest discomfort when coughing, a fast heartbeat, feeling extremely fatigued or
weak, nausea and vomiting, diarrhea, seizures, etc. Patients with severe symptoms experi-
ence loss of appetite, bodily discomfort, and coughing up blood or cyanosis. Pneumonia
can be transmitted in a variety of ways. When a child breathes, viruses and bacteria often
present in their nose or throat might infect the lungs. When they cough or sneeze, it can be
spread by airborne droplets. Globally, millions of individuals are affected by pneumonia
every year. Overall, it is the third major cause of death. In 2016, 860,373 children under the
age of five died from pneumonia, while 808,694 died in 2017. Every year, 90,000 children
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in Pakistan die from pneumonia. Even though it is more frequent in South Asia and Sub
Saharan-Africa, pneumonia affects families and children all over the world. Children under
the age of five are highly susceptible to pneumonia in countries with high mortality rates,
and in Pakistan, it is the second leading cause of death for such children. Pakistan’s Abbot-
tabad City had a mortality rate from pneumonia of 14 deaths for every 1000 children under
the age of 5 prior to interventions. In a hamlet in Pakistan’s Northern Areas, pneumonia
killed 44 percent of the children under the age of five between 1988 and 1991, according
to formal autopsy techniques. For infants and children aged 1 to 4, pneumonia remains a
major cause of death in the Northern Areas, according to a verbal autopsy conducted by
the ‘Aga Khan Health Services’, Pakistan [2–4].

Pneumonia is more frequent in poor and impoverished countries, where overcrowding,
pollution, and unsanitary climatic factors predominate. This has aggravated the situation,
and medical supplies are short. As a result, early detection and care can make a signifi-
cant difference in preventing the disease from spreading to a fatal stage. For diagnosis,
radiographic evaluation of the lungs by utilizing computed tomography (CT), magnetic
resonance imaging (MRI), and radiographs (X-rays) is commonly employed. X-ray radio-
graphy is a congenital and generally a low-cost assessment of the lungs [5]. The white
patches in the pneumonic X-ray that distinguish a pneumonic state from a healthy one
are known as infiltrates. In contrast, chest X-ray diagnostics for pneumonia identification
are vulnerable to subjective variability. As a result, an automated approach for detecting
pneumonia is necessary.

Over conventional testing techniques, X-ray imaging technology has several benefits
as an alternative diagnosis procedure for pneumonia. These advantages incorporate its low
operating cost, widespread accessibility for X-ray capabilities, non-invasiveness, reduced
computation complexity, and equipment simplicity. Given the present global healthcare
crisis, X-ray imaging might be a superior option for the large-scale, simple, inexpensive,
and rapid identification of a pandemic, as well as pneumonia, COVID-19, heart failure,
bone fracture, and so on [6]. Over the last few years, computer-controlled pneumonia
diagnosis systems have become increasingly popular as a way to enhance the efficiency
and validity of clinical services. Deep learning approaches go beyond standard machine
learning methods for various image analyses in the medical field applications, as in tracking,
categorization, and classification [7].

Deep learning is a powerful artificial intelligence technology that can help solve com-
plex computer vision problems [8]. For image categorization tasks, deep learning models,
particularly convolutional neural networks (CNN), are frequently used [9,10]. Being data-
intensive models, these models require a large amount of data for better performance,
which is difficult for biomedical image classification issues since it needs experienced
doctors to identify each image. Transfer learning [11] is a workaround to overcome this
barrier. In this strategy, a model trained on a large dataset is reused to resolve a problem
involving a small dataset, and the network weights calculated in this model are used. In
this study, we utilized different pre-trained networks to detect pneumonia in its early stages
and make the following contributions.

• An ensemble model is derived where a CNN model is joined with the pre-trained
Inception-V3 to obtain accurate results for pneumonia classification, thus investigating
the influence of transfer learning for enhancement in models’ performance.

• Data augmentation is used to investigate the impact of artificially increased data on
the accuracy of models trained using deep learning. The impact of data augmentation
is also studied for model overfitting.

• Performance of models is analyzed regarding the use of single models vs. custom-
made ensemble models for the task of pneumonia detection. Additionally, a compari-
son to state-of-the-art models is also performed.

The rest of this paper is formulated as follows. Section 2 covers the related work for
the current study. Preprocessing, data splitting, and deep learning models are all covered
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in Section 3. The results and discussion are provided in Section 4, while the conclusion is
given in Section 5.

2. Literature Review

Many researchers have been working in the domain of disease detection to develop
automated detection models. Deep learning has already been used to efficiently enhance
productivity, based on computer-assisted diagnosis technologies, particularly in the fields
of medical imaging, image classification, and image restoration [12,13]. A large number of
patients and a shortage of medical experts and supporting staff are the primary difficulties
for pneumonia detection. It can be difficult for radiologists to identify pneumonia using
chest X-rays. The presence of pneumonia-containing CXR images is rarely unidentified,
may be masked by various findings, and can simulate many other harmful irregularities.
These inconsistencies cause striking contradictions among radiologists in determining
pneumonia. Many research studies have developed different algorithms to detect diseases
and save lives. CNN has been used to perform a vast range of classification problems
associated with medical diagnosis, including breast cancer detection [14], skin cancer classi-
fication [15], interpretation of chest X-ray pictures to identify the disease [16], identification
of white blood cell cancer using images of bone marrow [17,18], and more.

The author [19] utilized the new chest X-ray-8 dataset comprising 108,948 chest X-ray
images of 32,717 unique patients, gathered from 1992 to 2015, with eight illness image
labels and multiple labels on each image. For identifying problematic terms, eliminating
negation, and reducing ambiguity, several natural language processing approaches are
used. Experiments are performed using deep CNN to discriminate eight distinct thoracic
disorders and medical complications. Guan et al. [20] presented a deep learning model, the
attention-guided convolutional neural network (AGC-NN), to demonstrate a distinction
between the eight malignancies identified in the previous paper. Singh et al. [21] assessed
the performance of deep learning methods for identifying abnormalities in regular frontal
chest radiographs and the stability or change in findings over time. Another study [22]
employed a transfer learning strategy in conjunction with deep CNN to identify pneumonia
through chest radiographs.

For classifying pneumonia based on X-ray images, ref. [23] utilized an ensemble learn-
ing approach. Cropping and histogram equalization were also used as image preparation
methods since cropped images and histogram equalization improve image quality and
reduce unnecessary information. Experiments were conducted using the Kaggle dataset,
and the study achieved the best accuracy of 97%. Ensemble learning is employed in [24] to
derive features from an X-ray to confirm the presence of pneumonia and identify the type
of pneumonia. To balance the dataset and achieve the best identification result, an image
augmentation approach is also applied. Another study on pneumonia detection is [25],
which utilizes a large dataset of 5216 images. An optimized CNN architecture is used to
detect viral, bacterial, and fungal infections using the X-ray images. Different architectures
are studied for analyzing the influence of the number of layers and other parameters on the
training time and obtained accuracy. The ensemble deep learning approach was utilized in
the study [26] to detect COVID-19 and pneumonia in a joint dataset. In a similar fashion, ref.
[27] used the deep CNN model to detect pneumonia from chest X-ray images. The authors
of [28] employed ensemble models for the detection of pneumonia. Similarly, ref. [29]
utilized ensemble models for the detection of COVID-19 from X-ray images. Ensemble
deep learning is utilized in the study [30] to classify heart disease. The major goal of these
studies is to improve the accuracy of classification for imbalanced datasets.

The study [31] employed fine-tuned parameters and information obtained via transfer
learning to develop ensemble learning models for COVID-19 identification from chest
X-rays. Another similar study is [32], which proposed a CNN-based deep learning model.
Images are resized and preprocessed for better results. Different parameters are optimized
to reduce model overfit and obtain better results. The authors present a deep learning
approach for pneumonia deduction in [33]. The efficacy of the suggested model is im-



Diagnostics 2022, 12, 1280 4 of 16

proved by the use of several parameter optimization techniques. Ref. [34] used a deep
CNN architecture with data augmentation for pneumonia. CNN is studied with different
architectures to achieve the best results, and results are analyzed with and without data
augmentation. Results suggest that, with the augmentation approach, the accuracy is
83.38%, while with the original dataset, it is only 80.25%. A comparative and analytical
summary of the discussed works is given in Table 1.

Table 1. Summary of the related work.

Ref. Dataset Training Testing Classifiers/Models Year Accuracy

[22] Chest X-ray images (augmented) 9000 419 Different pre-trained CNN model 2020 0.98
[23] Chest X-ray images 5232 624 Ensemble model 2020 97.4
[25] Chest X-ray images 5216 640 CNN model 2021 90.78
[27] Chest X-ray images (rearranged) 3722 2134 Proposed CNN model 2019 0.9373
[31] COVID-19 X-ray images 90% 10% Ensemble learning deep 2020 99
[24] Chest X-ray images 80% 20% Ensemble model 2021 86.3
[28] Chest X-ray images (rearranged) 4686 1170 Ensemble deep learning model 2021 98.81
[26] COVID-19 and CXR images joined dataset 6086 Ensemble deep learning model 2021 95.05
[29] CT chest COVID-19 images dataset Ensemble deep learning 2021 93.57
[30] Heart disease dataset 800 records Ensemble deep learning 2020 91

Results of the aforementioned works indicate that the ensemble models outperform
the single models in terms of performance, both for machine learning and deep learning
models. Similarly, the results suggest that data augmentation helps to reduce the probability
of model overfit and increases performance. The use of transfer learning, where a pre-
trained model is used for pneumonia, is reported to have high accuracy. In view of these
facts, this study adopts the use of the pre-trained models to generate an ensemble with the
CNN model.

3. Proposed Methodology

This section briefly covers the dataset description, preprocessing, deep learning mod-
els, and evaluation metrics. Figure 1 shows the workflow diagram of the methodology
followed in this study. Starting with the chest X-ray data, the study follows preprocessing
and data augmentation. Preprocessed data are later used to train the proposed model for
training and testing. The performance of the trained model is then analyzed using the
unseen data, and accuracy and other well-known performance metrics are used.

Figure 1. The workflow of the proposed methodology.
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3.1. Dataset Description, Preprocessing, and Augmentation

The pneumonia chest X-ray image dataset for the current study is obtained from
Kaggle [35]. The dataset contains 7750 X-ray images in total, where 6200 are used for
training while 1550 are used as the test set. For preprocessing, X-ray images are resized.
The original images are recorded in different dimensions, such as 1344 × 600, 1272 × 1144,
etc. Therefore, from a model implementation and computational perspective, the X-ray
images are resized to a standard size. All images are converted into 150 × 150 × 3 size,
indicating the height, width, and the number of channels, respectively. The number
of channels is three and includes red, green, and blue. After the image resizing, data
augmentation is performed to increase the size of the dataset.

For data augmentation, the image augmentor Python library is used to balance the
normal and pneumonia class images. The flow of the data augmentation is provided in
Algorithm 1. The data augmentation follows a series of sequential steps, starting with
the rotation. It is followed by the zoom, flip_left_right, and flip_top_bottom functions. In
the end, the random_distortion function and sample rate are used. Data augmentation
is applied only to the normal images because the number of pneumonia X-ray images is
already high in the original dataset. Normal images are generated to balance the dataset,
which reduces the model overfitting for majority class data.

Algorithm 1 Data augmentation
Input: Normal class images
Result: Augnormal dataset −→Equal number of normal and pneumonia class images

1: for i to N images in CXRnormal do
2: P[i] ←− Rotate(probability = 0.3, max_le f t_rotation = 15, max_right_rotation =

15)
3: P[i]←− Zoom(probability = 0.3, min_ f actor = 1.1, max_ f actor = 1.5)
4: P[i]←− Flip_Le f t_Right(probability = 0.5)
5: P[i]←− Flip_Top_Bottom(probability = 0.5)
6: P[i] ←− Random_Distortion(probability = 0.9, grid_width = 2, grid_height =

2, magnitude = 8)
7: end for

The purpose of the data augmentation is to balance the class distribution so as to
improve the training process of the models, thereby enhancing their performance. A few
sample X-ray images of normal and pneumonia classes are shown in Figure 2.

(a) (b)
Figure 2. Samples of CXR images. (a) Normal and (b) pneumonia.

3.2. Data Splitting

The models are trained in order to discover and remove unnecessary patterns from
the data. The dataset is divided into a training set and a testing set for this purpose. The
training dataset is used to fit the model, and the algorithm makes predictions using the test
set, which are then evaluated with the original labels to measure the method’s efficiency.
We arbitrarily split the data into train and test halves with a proportion of 0.8 and 0.2,
respectively, in this study. Table 2 indicates the number of training and testing samples.
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Table 2. Number of samples for train and test split.

Class Training Set Testing Set Total

Normal 3089 786 3875
Pneumonia 3111 764 3875

Total 6200 1550 7750

3.3. Pre-Trained Deep Learning Models with Transfer Learning

In practice, building a deep network from the ground up is difficult. Weights are
randomly allocated before training and changed repeatedly, relying on the datasets and the
loss function in a large deep neural network. It takes time to change the weight iteratively,
and accordingly, as a result of the paucity of training data, the deep network can also
become overfit.

Transfer learning is a powerful tool for dealing with the mentioned deep learning
problems [36]. It makes use of a pre-trained convolutional deep neural network that is
developed on a different dataset [37]. A CNN can be trained to recognize hierarchical
representations in images, as previously stated, and the information contained inside the
weights of the pre-trained model may be used for different tasks. Lower-level features such
as edges and vertices are collected at the lower-level convolutional layer. As a result, a new
dataset must be used to train only higher-level representations, whereas representations at
a lower level can also be transferred. The procedure of fine-tuning is to adjust the weights
of higher hidden layers, and its effectiveness is determined by the distance between the
origin and destination datasets. Many different tasks have been successfully employed to
train a deep CNN using pre-trained weights, and the majority of well-known pre-trained
models are trained using appropriate datasets.

3.3.1. Convolutional Neural Network

The most important deep learning model is CNN, which uses convolution instead
of general matrix multiplication. CNN is mostly used to classify objects based on image
data [38,39]. A CNN is composed of three layers. The input layer creates an artificial input
neuron that prepares the initial data for subsequent processing by the system. The hidden
layers serve as a link between the input and output layers, with output layers producing
results for the input layer.

Figure 3 shows the layer-wise architecture of the CNN model used in this study. Layers
of CNN serve as the core building blocks of these models [40]. When a filter is applied
to an input, the result is an activation. This is the fundamental process of convolution.
After several iterations of the same filter to the same input, a feature map is constructed,
which displays the locations and intensities of a detected pattern in the input, as well as
an image of the pattern. A pooling layer is yet another component of a CNN architecture.
The pooling layer helps to minimize the proportions of the feature sets. Therefore, the
number of parameters to learn, as well as the amount of network processing, is reduced.
The pooling layer adds the features in a feature map formed by a convolution layer in a
specific area [40].

The CNN model consists of 18 layers: three 2D convolutional layers (2DConv), three
max-pooling layers with 2 × 2 pool size, three batch normalization layers, four activation
layers with a rectified linear unit (ReLU) activation function, two dropout layers with a
0.5 dropout rate, and two dense layers. The first layer of the CNN model consists of a
2DConv layer with 256 filters and a 3 × 3 kernel. This 2DConv layer is followed by the
activation layer with the ReLU activation function. After this, we used a max-pooling layer
with a 2 × 2 pool size. The batch normalization layer is used after the max-pooling layer,
which is deployed with axis 1. There is again a 2DConv layer with 64 filters, and the last
2DConv layer consists of 16 filters. We used the binary_crossentropy loss function and
Adam optimizer to compile the CNN models. In the end, we fitted the model with 25 epochs.
Figure 3 shows the flow of the used CNN layers and the values of their parameters.
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Input Image Shape
(150,150,3)

Conv2D (256, (3,3))

Activation = "ReLU"
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size=(2, 2)) 

Batch Normalization
(axis=1)
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Conv2D (16, (3,3))
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Dropout (0.5)
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Optimizor = 'Adam'

Loss =
binary_crossentropy

Output

Figure 3. Architecture of CNN model used in this study.

3.3.2. Inception-V3 Model

The Inception-V3 model is an updated version of the Inception-V1 model. For greater
model adaption, the Inception-V3 model uses a number of approaches to optimize the
network [41]. It has a more extensive network than the Inception-V1 and V2 models.
The Inception-V3 model is a deep CNN that is trained directly on a low-configuration
computer. It is fairly difficult to train, and it takes a longer time, up to several days. This
problem is solved via transfer learning [36], which keeps the last layer of the model for new
categories. The parameters of the previous layers are kept, and the Inception-V3 model is
deconstructed as the final layer is removed using the transfer learning technique.

3.3.3. ResNet50 Model

ResNet50 is a CNN model with 50 layers. The ImageNet database which has been
trained on over a million images provides a pre-trained version of the network that can
be imported. Microsoft Research Asia suggested ResNet50 in late 2015 as a solution to the
difficulties of training CNN models. As a result, creating a residual network with Keras for
computer vision applications such as image classification is somewhat simplified [42].

3.3.4. VGG-16 Model

The VGG-16 was the 2014 ILSVR (ImageNet) competition winner. It is widely regarded
as the most sophisticated vision model design currently accessible. The ImageNet database
was used to train the VGG-16 network. The number 16 in VGG-16 denotes the presence of
16 weighted layers [43]. The VGG-16 network provides good accuracy even if the image
datasets are minimal because of its massive training. VGG-16 shows 92.7% accurate object
detection and is a classification model capable of classifying 1000 images into 1000 unique
categories. It is a common image classification algorithm that is simple to utilize with
transfer learning. With batch normalization and the addition of new layers to neural
networks, the training process may be sped up, making learning easier and the model more
stable. We use dropout layers to avoid overfitting in the model, as well as the activation of
the ReLu function and the Sigmoid in VGG-16. We used a 0.0001 learning rate with Adam
optimizer and binary cross-entropy loss.

3.4. Ensemble Deep Learning

Ensemble learning involves training many models on the same dataset and making
predictions using each of the trained models before integrating the predictions in some
fashion to make the final prediction [44]. Ensemble models are sophisticated machine
learning algorithms that increase the overall performance by incorporating decisions from
different models [45]. Because deep neural networks are stochastic in nature, with each
model learning certain filters and patterns, constructing ensembles of deep models is
an excellent way to improve detection accuracy. We used three ensemble models in our
study. Inception-V3 with CNN, ResNet50 with CNN, and VGG-16 with CNN are the three
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ensemble models used for training the X-ray images to increase the pneumonia detection
accuracy.

For building an ensemble model, as shown in Figure 4, this study uses pre-trained
deep learning models and a CNN model with input shapes (150, 150, 3). It is necessary
to include both pre-trained models and the CNN model with the same input size in a
sequential manner. The trainable parameters with their values are represented in Table 3.
We froze dense layers of pre-trained models such as ResNet50 by using the include_top
parameter with the value ‘False’. This parameter freezes the dense layers at the prediction
level (fully connected layers), and we concatenate the CNN before these dense layers.
Therefore, there is a difference in the trainable parameters of the individual ResNet50 and
combined ensemble ResNet50 with CNN.

Table 3. Trainable parameters for different deep learning models.

Model Trainable Parameters

CNN 533,977
VGG-16 9,460,737

Inception-V3 38,537,217
ResNet50 262,401

Inception-V3 with CNN 26,645,113
ResNet50 with CNN 28,411,357
VGG-16 with CNN 16,052,505

3.5. Evaluation Metrics

It is significant to learn how well the system is performing. For this purpose, various
evaluation parameters are utilized. When the model classifies the data, it gives four possible
outcomes, including true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). TP shows accurately predicted positive instances, TNs are correctly classified
negative instances, while FPs and FNs are incorrectly classified as positive and negative
instances, respectively. Recall, precision, accuracy, Cohen’s kappa, AUC, and F1 score are
used as performance evaluation metrics in this study.

Accuracy is the number of correctly classified predictions by a model over the entire
number of predicted instances and can be defined as

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision is the number of correct positive predictions from the total number of actual
predictions classified by the model as positive and can be statistically defined as

Precision =
TP

TP + FP
(2)

The recall is the score of true positive predictions to the instances that actually belong
to the positive class.

Recall =
TP

TP + FN
(3)

F1 score is an evaluation measure to estimate the model performance based on the
average of precision and recall and is represented as:

F1-score = 2× precision× recall
precision + recall

(4)

Cohen’s kappa is also used to determine a classification model’s performance.
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Figure 4. Architecture of three ensemble models used in this study.

4. Results and Discussion
4.1. Experimental Setup

TensorFlow was used in an Anaconda Jupyter notebook to conduct the experiments.
Using several CNN-based ensemble models, we investigated the accuracy of diagnosing
pneumonia from chest X-ray images. The data were preprocessed and split into train
and test sets in a 0.8 to 0.2 ratio, respectively. Fine-tuned deep learning models including
ResNet50, Inception-V3, and VGG-16 were used to produce an ensemble with CNN.
The ResNet50 with CNN, Inception-V3 with CNN, and VGG-16 with CNN are the three
ensemble models that are used in this study.
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4.2. Performance of Individual Deep Learning Models

The fine-tuned deep learning models, such as ResNet50, VGG-16, Inception-V3, and
CNN, were utilized for experiments. All the models were trained using the binary cross-
entropy loss function because our data contained normal and pneumonia classes, and for
optimization, the Adam optimizer was used. The 64 batch size and 0.0001 learning rate
were used for all models except for the ResNet50 model. We utilized a 0.001 learning rate
and the SGD optimizer to optimize the ResNet50 model. A dropout layer was employed
to prevent overfitting, and a batch normalization layer was implemented in the VGG-
16, ResNet50, and CNN models to speed up model training, make learning simple, and
minimize the error of generalization. All of the models were fitted with 25 epochs.

Table 4 contains the experimental results. CNN attained the highest accuracy as
compared to other models. We observed that CNN performs well for detecting pneumonia,
with an accuracy of 98.25%. This model attained 99.19% precision, 97.25% recall, and 98.21%
F1 score. The Cohen’s kappa and AUC values were 96.51% and 98.24%. The Inception-V3
deep learning model scored 96.58% testing accuracy and 95.54% recall. The results indicate
that the CNN model outperforms the other models in terms of accuracy.

Table 4. Results of fine-tuned pre-trained models.

Model Accuracy Precision Recall F1 Score Cohen’s Kappa ROC AUC

CNN 98.25 99.19 97.25 98.21 96.51 98.24
VGG-16 97.93 98.41 97.38 97.89 95.86 97.92

Inception-V3 96.58 97.46 95.54 96.49 93.15 96.57
ResNet50 97.87 98.15 97.51 97.83 95.74 97.87

The VGG-16 model attained 97.93% accuracy, 98.41% precision, 97.38% recall, and
97.89% F1 score. Cohen’s kappa was lower than other performance metrics, with 95.86%.
The AUC of the VGG-16 model is 97.92%, which is higher than Inception-V3 and ResNet50
but low as compared to CNN. The ResNet50 model attained 97.87% testing accuracy, 98.15%
precision, 97.51% recall, and 97.83% F1 score. The Cohen’s kappa was 95.74% and AUC
was 97.87%. We observed that the CNN model attained the best accuracy among the
four pre-trained deep-learning models, and Inception-V3 attained the lowest accuracy and
Cohen’s kappa as compared to other models.

Figure 5 presents the results of fine-tuned deep learning models including CNN,
VGG-16, ResNet50, and Inception-V3. We observe that CNN performs very well, with a
precision score of 99.19% and Cohen’s kappa score for the Inception-V3 model of 93.15%,
which is the smallest as compared to other models.

Figure 5. Comparison of individual models for performance evaluation metrics.



Diagnostics 2022, 12, 1280 11 of 16

4.3. Training and Testing Results for Deep Learning Models

The training and testing precision of the Inception-V3 with CNN model, as well as the
loss curves, is depicted in Figure 6a. We can see that the accuracy of training data is 99.56%
at epoch 13, and after this, variations are observed. Testing accuracy for the Inception-V3
with CNN increases with training data. We used a total of 25 epochs to train the ensemble
deep learning models and attained superior performance with this number of epochs. At
epoch 25, the training loss, as shown in Figure 6b, gradually dropped from 0.4322 to 0.0106,
whereas the testing loss was reduced from 0.4987 to 0.0292. The ensemble deep learning
model employs transfer weights with fine-tuning for identifying pneumonia from chest
X-ray images. Using X-ray images, all of the models are trained and tested for normal and
pneumonia classes.

Figure 6b,c show the training as well as testing accuracy and loss of the ResNet50
with CNN. We observe that the training data accuracy is 99.85% at epoch 13, and thereafter,
we observed increases and decreases. We trained the ensemble deep learning model with
a total of 25 epochs and achieved better performance with this number of epochs. The
training loss decreased from 0.4140 to 0.0054 at epoch 25, and the testing loss decreased
from 0.2873 to 0.0365. The training and testing accuracy of the VGG-16 with the CNN
model, as well as the loss curves, is shown in Figure 6e,f. We can observe that the training
data accuracy peaks at 99.66% at epoch 19, and thereafter, fluctuations are observed. The
accuracy of the VGG-16 improves when more training data are added. We used a total of
25 epochs to train the model, and this number of epochs resulted in better performance. At
epoch 25, the training loss dropped from 0.4742 to 0.0088, whereas the testing loss dropped
from 0.3073 to 0.703.

4.4. Performance of Ensemble Deep Learning Models

Ensemble learning has been reported as highly influential in obtaining higher perfor-
mance. Model ensembles are usually more accurate and error-tolerant than single models.
The ensemble’s components must be characterized by accuracy and variety in their predic-
tions for them to be effective. We achieved higher accuracy by combining VGG-16 with
CNN, Inception-V3 with CNN, and ResNet50 with CNN compared to using single deep
learning models. Inception-V3 with CNN attained the highest accuracy of 99.29% and
precision of 98.83%, as shown in Table 5. This model obtained a recall of 99.73%, and an
F1 score of 99.28%. The second-best ensemble model, ResNet50 + CNN, achieves 99.09%
accuracy, and the third-best ensemble model, VGG-16 + CNN, attained 98.06% accuracy.
Figure 6, shows the training and testing per epochs accuracies of deep learning models.

Table 5. Results of ensemble models for pneumonia detection.

Models Accuracy Precision Recall F1 Score Cohen’s Kappa ROC AUC

VGG-16 + CNN 98.06 96.69 99.47 98.06 96.12 98.08
Inception-V3 + CNN 99.29 98.83 99.73 99.28 98.58 99.30

ResNet50 + CNN 99.09 98.82 99.34 99.08 98.19 99.10

Performance comparison of all these models regarding the recall, precision, accuracy,
F1 score, Cohen’s kappa, and AUC is shown in Figure 7. Results show the high performance
of Inception-V3 with CNN, which performs exceptionally well, with 99.73% and 99.30% for
accuracy and AUC, respectively.
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(a) Accuracy of Inception-V3 with CNN. (b) Loss of Inception-V3 with CNN.

(c) Accuracy of ResNet-50 with CNN. (d) Loss of ResNet-50 with CNN.

(e) Accuracy of VGG-16 with CNN. (f) Loss of VGG-16 with CNN.
Figure 6. Training and testing accuracy of ensemble models. (a): Training and testing accuracy for
Inception-V2 with CNN, (b): Training and testing loss for Inception-V2 with CNN, (c): Training and
testing accuracy for ResNet-50 with CNN, (d): Training and testing loss for ResNet-50 with CNN,
(e): Training and testing accuracy for VVG-16 with CNN and (f): Training and testing loss for VVG-16
with CNN.
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Figure 7. Performance comparison of ensemble models.

4.5. Comparison with Existing Studies

To show the significance of the proposed approach, we carried out a performance com-
parison between the proposed approach and existing state-of-the-art approaches. Table 6
shows the comparison results with existing studies for pneumonia detection. We selected
these studies for comparison regarding their use of the dataset. The selected studies used
the same dataset for experiments and deployed an ensemble learning approach to detect
pneumonia. For example, the study [22] employed transfer learning weights to reach
98.00% accuracy with a variety of CNN models. Similarly, the study [23] used an ensemble
model, utilizing X-ray images to identify pneumonia, and achieved accuracy of 97.4%. In a
similar fashion, ref. [26] used an ensemble deep learning model to identify COVID-19 and
pneumonia from X-ray images and achieved significant accuracy of 95.05%. The study [28]
also used an ensemble deep learning model to identify pneumonia and achieved an accu-
racy score of 98.81%. Performance comparison with these studies suggests that the current
approach shows better performance for pneumonia detection from chest X-ray images,
with 99.29% accuracy when combining Inception-V3 with CNN. Similarly, the performance
of ResNet50 with CNN is also better than existing studies, with 99.08% accuracy.

Table 6. Performance comparison with other approaches.

Ref. Techniques Dataset Accuracy (%)

[22] Pre-trained CNN models Chest X-ray 98.00
[23] Ensemble model Chest X-ray 97.4
[24] Ensemble model Chest X-ray 86.3
[25] CNN model Chest X-ray 90.78
[26] Ensemble model COVID-19, chest X-ray 95.05
[27] CNN model Chest X-ray 93.73
[28] Ensemble model Chest X-ray 98.81

This study
VGG with CNN Chest X-ray 98.06

Inception-V3 with CNN Chest X-ray 99.29
ResNet50 with CNN Chest X-ray 99.08

4.6. K-Fold Cross-Validation Results

This study uses deep learning models to perform K-fold cross-validation in order to
demonstrate the feasibility and efficiency of the models. Table 7 shows the results of 10-fold
cross-validation. Results show that the models’ performance is also significant under K-fold
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cross-validation. The ensemble of Inception-V3 with CNN achieves the best accuracy score
of 0.980 with the lowest standard deviation of 0.01. ResNet50 and the ensemble of ResNet50
with CNN also perform significantly better, with an accuracy score of 0.971 and standard
deviations of 0.01 and 0.03, respectively. The VGG-16 combined with CNN produces an
accuracy score of 0.984 with a standard deviation of 0.02. The 10-fold cross-validation
results also show that the proposed approach is significant for pneumonia identification.

Table 7. Results of 10-fold cross-validation for individual and ensemble models.

Models Accuracy Standard Deviation

CNN 0.963 +/− 0.05
ResNet50 0.971 +/−0.01

Inception-V3 0.960 +/−0.01
VGG-16 0.980 +/−0.00

ResNet50 with CNN 0.972 +/−0.03
Inception-V3 with CNN 0.981 +/−0.01

VGG-16 with CNN 0.984 +/−0.02

5. Conclusions

Pneumonia is a leading cause of death in infants and elderly people and takes hun-
dreds of thousands of lives every year. Smokers, drinkers, surgery patients, asthma patients,
persons with a compromised immune system, and those over 65 are at a higher risk of
pneumonia. Early diagnosis of pneumonia and prompt treatment can potentially reduce the
mortality rate of pneumonia. Pneumonia is often diagnosed by skilled specialists using a
chest X-ray, but the lack of medical experts and the increase in pneumonia patients have re-
cently introduced difficulties in its treatment. This study proposes an automatic pneumonia
detection approach using chest X-ray images with deep learning-based ensemble models.
Reduced training time and higher accuracy are obtained by leveraging the pre-trained
models and combining them with a custom-built CNN model. The Inception-V3 ensemble
achieved the highest accuracy among the models, with a 99.29% accuracy score, and 98.83%,
99.73%, and 99.28% scores for precision, recall, and F1, respectively. The ResNet50 ensemble
obtained 98.93% accuracy, followed by the VGG-16 ensemble, with a 98.06% accuracy score.
Results indicate that individual pre-trained models show poor performance as compared
to their ensemble models.
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