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 A B S T R A C T

Gender classification plays a vital role in various applications, particularly in security and healthcare. While 
several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition 
are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, 
high computational costs, and recognition errors. This study investigates gender classification using gait data 
captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional 
biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent 
preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral 
features extracted from these cycles were transformed using a novel integration of Feedforward Artificial 
Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the 
Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation 
score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation 
framework in advancing robust gender classification.
1. Introduction

Gender classification plays an essential role in human–computer 
interaction [1]. Automated gender detection is a modern technique 
that revolutionizes the process of identifying a person’s gender, with 
far-reaching implications in numerous academic and practical fields. 
Integrating gender recognition into contemporary authentication pro-
cedures improves security and biometrics [2], thereby strengthening 
identity verification in access control and surveillance systems. In the 
complex field of human–computer interaction [1], automatic gender 
identification optimizes usability and interaction by personalizing user 
experiences based on gender-specific preferences. Gender differentia-
tion in the dynamic landscape of mobile applications [3] refines user 
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profiling by tailoring content and features to gender-specific prefer-
ences, thereby enhancing user engagement. Digital forensics [4] uses 
automatic gender detection to unearth nuanced insights, enriching 
investigations by interpreting gender signals in multimedia artifacts. 
Consumer research [5] benefits from gender classification’s profound 
insights, strategically tailoring marketing strategies to gender-specific 
behaviors. Behavioral analysis [6] thrives on gender-based patterns, 
enhancing our comprehension of the complex relationship between 
gender and behavior. Automated gender detection has a significant im-
pact on personalization and recommender systems [7], enhancing rec-
ommendations, services, and content curation to correspond with users’ 
gender-related preferences and, ultimately, increasing user satisfaction. 
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This multifaceted concept has implications in the fields of security, 
human–computer interaction, mobile applications, digital forensics, 
consumer research, behavioral analysis, and personalization systems. 
As discourse evolves, the convergence of gender classification and 
technology continues to refine interactions, with reverberations in 
numerous disciplines. However, many of these applications demand 
contactless, privacy-preserving, and robust sensing solutions charac-
teristics that conventional visual or wearable systems often fail to 
deliver.

Biometric methods for determining human gender include facial 
recognition [8–10], handwriting analysis [4,11], body posture [12], 
speech recognition [13–18], and gait analysis [19–23]. Among these, 
facial and gait-based features are widely used for gender classifica-
tion, and are also relevant to tasks such as identity verification, age 
estimation, and emotion recognition [24]. While high-resolution fa-
cial imagery can yield high classification accuracy, challenges arise 
in practical scenarios where faces are partially occluded or captured 
from a distance, resulting in low-quality data unsuitable for accurate 
detection [25]. Gait-based methods offer a promising alternative as 
they do not rely on high-resolution imagery and can operate at a 
distance. Gait refers to the unique walking pattern of individuals [24] 
and can be recorded using various modalities, including vision-based 
and wearable sensor systems. However, the effectiveness of vision-
based methods may depend heavily on factors such as camera quality, 
lighting, and viewing angles [26]. Similarly, wearable sensor systems 
such as those using accelerometers, gyroscopes, and pressure sensors 
may introduce noise due to sensor placement variability or user dis-
comfort, which can affect signal quality and model performance [27]. 
These considerations motivate the exploration of alternative sensing 
technologies that offer contactless, privacy-preserving, and robust data 
acquisition under diverse conditions.

In this research, a unique strategy is proposed to address these 
issues by employing gait analysis with Ultra-Wideband (UWB) radar 
for gender classification. Although UWB radar has applications in gait 
analysis [23,28–35], its use for gender classification in conjunction 
with gait analysis represents a novel and unexplored field. Using UWB 
radar technology, this approach analyzes the distinct gait patterns of 
individuals in order to determine their gender. In contrast to conven-
tional systems, UWB radar emits very short electromagnetic pulses. This 
unique characteristic gives the radar unmatched precision, allowing it 
to detect even the most intricate movement variations. Notably, UWB 
radar is capable of penetrating obstacles such as garments, thereby 
eliminating the need for direct line-of-sight observations [36]. This 
characteristic is especially advantageous in real-world situations where 
obstructions and environmental factors can affect data collection. These 
properties make UWB radar particularly suitable for sensitive environ-
ments such as healthcare facilities, secured buildings, or smart homes, 
where accurate gender classification must occur under occlusion, poor 
lighting, or strict privacy requirements. Despite its advantages, UWB 
radar can be sensitive to clutter and interference, and may face chal-
lenges in distinguishing individuals in multi-user environments. These 
limitations warrant further investigation for practical deployment.

1.1. Research contributions

This manuscript presents novel research with the following specific 
and impactful contributions:

• This investigation examines the efficacy of Ultra-Wideband
(UWB) radar technology in identifying gender-specific gait pat-
tern differences. A novel and substantial radar dataset was com-
piled from a cohort of 163 KFUEIT volunteers (88 males, 75 
females), making it one of the largest radar-based gait datasets 
for gender classification, particularly within the Pakistani demo-
graphic.
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• To optimize gender classification accuracy and enhance data 
quality, a series of customized preprocessing techniques were 
employed. These include a three-pulse canceller (Eq.  (1)) for 
effective clutter removal and an adaptive, two-threshold peak 
detection technique (Eq.  (2)) developed specifically for robust 
gait cycle segmentation from UWB radar signals.

• A novel feature transformation and fusion strategy was intro-
duced to improve classification effectiveness by addressing high 
correlation among raw spectral features (Fig.  6). This strategy 
combines the non-linear dimensionality reduction and feature 
learning capabilities of a Feedforward Artificial Neural Network 
(FANN) with a 1024-512-256-32 architecture and class probabil-
ities derived from a Random Forest (RF) classifier. This FANN-RF 
fusion approach represents a novel contribution not previously 
explored in radar-based gait analysis literature.

• A comprehensive evaluation was performed using ten diverse 
Machine Learning (ML) classifiers (PAC, HGBC, CatBoost, LGBM, 
XGBoost, RC, LDA, RF, MLP, and ETC). All classifiers were rig-
orously trained and evaluated on the transformed feature set 
using exhaustive grid search for hyperparameter tuning to ensure 
optimal and fair comparison (Table  3).

• The proposed FANN-RF fusion approach demonstrated state-of-
the-art performance in radar-based gender classification, achiev-
ing a peak accuracy of 94.68% and an F1-score of 95% with the 
Random Forest classifier (Table  4). This outperformed baseline 
models using only original spectral features (e.g., 88.5% accuracy 
for RF on original features). The robustness of the approach 
was further validated through a 5-fold cross-validation score of 
0.93 ± 0.01 for the RF model (Table  5).

• This work advances the field by exclusively leveraging UWB 
radar for contactless gait analysis, distinguishing it from prior 
studies that relied on vision-based systems or inertial sensors. 
The integration of enhanced clutter removal, adaptive peak de-
tection tailored for radar signals, and the novel FANN-RF feature 
fusion strategy together contribute a substantial methodologi-
cal advancement in improving gender classification efficacy in 
radar-based human sensing.

2. Literature review

This section reviews the existing literature on gender classification 
using gait analysis. Studies are grouped thematically based on the tech-
nology and methodology employed: vision-based approaches, wearable 
sensor-based techniques, radar-based systems, and hybrid deep learning 
methods. A comparative analysis highlights each group’s contributions, 
challenges, and how they inform or contrast with our proposed method 
using UWB radar.

2.1. Vision-based approaches

Vision-based gait analysis has gained prominence due to its non-
invasive nature and compatibility with surveillance systems. Microsoft 
Kinect and other depth cameras have been extensively used in prior 
work. For instance, in [25], a statistical model using Kinect-derived 
3D joint data achieved a 97.5% accuracy. Similarly, Azhar et al. [26] 
employed joint coordinates with logistic regression, reaching 98% ac-
curacy.

Some researchers combined deep learning with vision techniques. 
The study [37] explored CNN-based feature extraction with an SVM 
classifier, achieving 87.94% accuracy on the CASIA-B dataset. The work 
in [38] used silhouette-based wavelet features and PCA-C4.5 classifiers 
to achieve high accuracy on CASIA-B and OU-ISIR datasets (97.9% and 
97.5%). Vision methods, while effective, often suffer from limitations 
in real-world settings due to lighting variation, occlusion, and camera 
angle dependency.



A.A. Saleem et al. Array 27 (2025) 100477 
2.2. Wearable sensor-based approaches

Several studies leverage inertial sensors in smartphones or dedicated 
wearable devices. For example, Jain and Kanhangad [39] used His-
togram of Gradient (HG) features from mobile accelerometers with a 
bagging classifier to reach 94.44% accuracy. The authors of Nutakki 
et al. [40] experimented with SVM, decision trees, Naive Bayes (99%), 
and Random Trees (83%) using mobile sensor data.

Work in [20] evaluated smartphone-based gait patterns using sev-
eral classifiers (DT, SVM, KNN, LSTM), achieving 94.11%. Khabir et al. 
[41] explored age and gender classification using inertial sensor data, 
with SVM reaching 84.76%. However, wearable methods face issues 
such as user compliance, inconsistent sensor placement, and battery 
limitations.

2.3. Radar-based systems

Radar offers robust gait sensing in uncontrolled environments and 
under occlusion. Micro-Doppler radar studies like Ni and Huang [42] 
used m-D signatures for identifying walking styles, achieving 96.7% 
accuracy. The work in [43] applied UWB radar with preprocessing 
and dimensionality reduction, achieving 93.6% accuracy with an MLP 
classifier.

Radar-based approaches overcome visual occlusion and lighting 
issues but often require complex signal processing pipelines and are 
constrained by limited dataset diversity. Our proposed system builds 
upon this line of research by incorporating a larger, diverse cohort 
and improved signal fusion and feature extraction, aiming to boost 
generalizability.

2.4. Hybrid and deep learning approaches

Deep learning approaches often combine spatial and temporal gait 
features. In [44], a CNN with MFM units handled mislabeled data 
and achieved 92.7% accuracy. The ASTL framework in [45] intro-
duced attention-aware spatiotemporal learning and reached 97% ac-
curacy. Lau and Chan [46] proposed a hierarchical CNN tree model 
achieving 99.11% on multi-view gait data.

Additionally, entropy-based methods like GEnEI and AVGEnEI were 
explored in [47], combined with SVM and KNN (up to 97.3% accu-
racy). Although effective, many of these models are resource-intensive 
and often trained on homogeneous datasets, which reduces real-world 
performance.

2.5. Limitations and motivation for the proposed study

Despite the impressive performance reported in various studies on 
gait-based gender classification, several important limitations persist 
across the literature. A common issue is the reliance on data collected 
in highly controlled environments, such as laboratories or indoor spaces 
with ideal lighting and minimal distractions. While these conditions 
ensure data precision, they fail to replicate the complexity of real-world 
scenarios where factors such as uneven terrain, varying surfaces, crowd 
density, or occlusion significantly affect gait. As a result, models trained 
on such data often struggle to generalize well in practical applications.

Another critical limitation lies in the hardware dependency ob-
served in many approaches. Techniques that utilize depth cameras 
(e.g., Kinect), frequency-modulated radar, or wearable inertial sensors 
offer precise measurements but are not always feasible for continuous 
or scalable deployment due to cost, maintenance, or user compliance. 
For instance, systems requiring users to carry smartphones or wear 
dedicated sensors assume consistent placement and usage, which is 
rarely guaranteed outside experimental settings.

Furthermore, the majority of existing datasets used for training and 
evaluation lack sufficient diversity in terms of gender, age, body types, 
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walking speeds, and environmental conditions. This narrow scope hin-
ders the robustness and inclusiveness of the developed models. Finally, 
while deep learning methods have achieved high classification accu-
racy, they often require extensive computational resources and large 
labeled datasets, posing challenges for real-time implementation and 
adaptability.

These limitations highlight the need for a more robust and general-
izable approach—one that works effectively in unconstrained environ-
ments, accommodates varied walking patterns, and requires minimal 
reliance on specialized or wearable hardware. This study addresses 
these gaps by utilizing UWB radar technology and an enhanced signal 
processing pipeline, combined with a diverse participant dataset and a 
novel feature fusion methodology designed for real-world applicability.

3. Proposed methodology

This section outlines the complete pipeline used for gender clas-
sification based on UWB radar gait data. It details the sequential 
steps, from data collection and signal processing to feature extraction, 
transformation, and classification. The goal is to present a reproducible 
methodology that transforms raw radar data into meaningful predic-
tions. The study presented in this manuscript focuses on the task of 
gender classification by employing gait data obtained using UWB radar 
technology. The framework of the process is shown in Fig.  1, indicating 
the sequential progression of steps involved. The first stage involves the 
collection of raw radar data from people of both genders. Following 
that, a thorough preprocessing phase is implemented, which includes 
techniques for refining and cleaning the data. Moreover, the use of 
feature extraction techniques is implemented, facilitating the extraction 
of relevant information from the gathered gait data. After the prepro-
cessing and feature extraction stages are finished, the obtained features 
are subjected to a transformational process. Subsequently, these trans-
formed features are strategically divided into two sets for training 
and testing purposes. In the next stage, various ML classifiers that are 
designed. These classifiers are trained using transformed gait features. 
The classifiers undergo rigorous training to effectively identify complex 
patterns and inherent traits present in the data, hence facilitating 
precise gender classification. In the final stage, the trained classifiers 
undergo a thorough evaluation process using a test set. The assessment 
procedure employs a variety of metrices, such as accuracy, F1-score, 
precision, and recall. These metrics offer a thorough evaluation of 
the classifiers’ performance, providing insights into their capacity to 
reliably determine gender based on the distinct gait patterns exhibited 
by individuals.

3.1. Data collection

This subsection describes how the raw radar gait data were col-
lected using a UWB radar system. It provides information on the 
hardware setup, participant demographics, data volume, and ethical 
considerations, which form the foundation for subsequent processing 
and analysis. The study used a Time Domain PulsON 410 monostatic 
radar module (P410) for data collection, as seen in Fig.  2 by the red 
circular area. The monostatic radar setup used by this module has omni-
directional antennae. The operational requirements of the radar system 
are in accordance with the criteria set forth by the Federal Communi-
cations Commission (FCC). The device generates radio waves within 
the frequency range of 3.1 GHz to 5.3 GHz, with a central frequency 
of 4.3 GHz, thereby complying with the restrictions set forth by the 
FCC [29,31,34,35]. The P410 system has an operational bandwidth of 
2.2 GHz. The P410 device meets the requirements outlined for UWB 
systems [29,31,34,35,48], since it exhibits a fractional bandwidth that 
surpasses 50%, particularly measuring 51.16%. The system’s adherence 
to the constraints imposed by the FCC highlights its compliance with 
regulations governing UWB technology [29,31,34,35].
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Fig. 1. Proposed methodology diagram.
Fig. 2. Subject moving toward P410 radar mounted on stand and encircled red.
The P410 equipment was carefully configured before to data collec-
tion, and this configuration was maintained for both genders through-
out the trial as show in Table  1.

Data were collected from both male and female KFUEIT students. 
The study included a diverse group consisting of 163 participants, 
with 88 males and 75 females between the ages of 18 and 24. In 
order to enhance the flexibility and dependability of the study, an 
extensive set consisting of 1630 data points was obtained, encompass-
ing 10 unique observations for each participant. The study presented 
in this manuscript was conducted with a strong emphasis on ethical 
considerations. The study underwent a thorough evaluation by the 
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ethics committee at KFUEIT to assure adherence to ethical norms as 
defined in the Helsinki Declaration, prior to the commencement of 
data collection. Informed consent was obtained from all participants, 
expressing their awareness of the potential risks and benefits connected 
with their involvement in the trial. The radar equipment was placed at 
a height of 72 cm on a stand. A Raspberry Pi (RPi) device and a Virtual 
Network Computing (VNC) viewer have been combined in a seamless 
manner, thanks to technological developments that improved the ef-
fectiveness of the data gathering process and allowed for convenient 
remote access to the RPi as well as remote control of the radar system. 
Each participant’s interaction with the radar system followed a set 
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Table 1
Radar configuration for the experiment.
 Parameter Values  
 Center frequency 4.3 GHz  
 Frequency range 3.1 GHz to 5.3 GHz  
 Scan window 5 s  
 Height 72 cm  
 Transmit gain −12.64 dBm  
 Radar range 9.5 m  
 Antennas One Tx and one Rx  
 Operating temperature Between 0 ◦C to 70 ◦C 

protocol. The participants were given explicit instructions to approach 
the radar system from a fixed distance of 9 m. Participants were asked 
to maintain a frontal orientation, as depicted in Fig.  2. During the 
course of this interaction, the process of data recording was carried 
out for a duration of 5 s for each participant. It is important to note 
that variables such as walking speed, footwear, and physical conditions 
were not strictly controlled during data collection to better reflect 
realistic and unconstrained scenarios. After the data was gathered, it 
was carefully organized by separating it into directories labeled ‘‘Male’’ 
and ‘‘Female’’.

3.2. Signal processing and feature extraction

This subsection presents the steps taken to convert raw radar scans 
into structured data and extract meaningful gait features. It covers the 
radar data matrix formulation, clutter removal, peak detection, gait 
cycle segmentation, and feature computation.

3.2.1. Radar data representation
The radar scan gets transformed into a matrix as shown in Figure (a) 

structure, with a duration of 5 s. Each column of the matrix corresponds 
to a vector that records the return signal from the radar in the fast 
time domain. Similar to this, each row in the matrix contains a vector 
that records the radar’s return signal in the slow time domain and 
is associated with a particular fast time event. The radar’s effective 
indoor scanning range is 9.5 m, yielding a total of 1440 columns. Each 
column represents a unique distance from the radar. The calculation for 
determining the distance covered by a singular column is as follows: 
The total distance covered by the scan, measured in centimeters, is 
950 cm. The total number of columns is 1440. Each column covers 
a distance of 950∕1440 = 0.659 cm. Each individual column within 
the matrix contains a vector of radar return signals that correspond to 
a specific distance of 0.659 cm from the radar. In order to accurately 
measure the walking pattern, a designated set of columns, ranging from 
200 (≈130 cm) to 860 (≈567 cm) total distance equal to 437 cm, is 
chosen.

3.2.2. Clutter suppression using pulse canceller
A three-pulse canceller approach given in Eq.  (1) is used to im-

prove data quality by lowering clutter interference. This technique 
attenuates stationary reflections by subtracting delayed pulses, thereby 
enhancing the visibility of moving targets, such as limbs during gait—
while suppressing static background noise. This directly improves the 
signal-to-clutter ratio and ensures that only dynamic micro-Doppler 
components relevant to gait are retained. 
𝑅𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑖 − 2𝑅𝑖−1 + 𝑅𝑖−2 (1)

The 𝑅𝑜𝑢𝑡𝑝𝑢𝑡 is obtained by subtracting the present radar return 
signal 𝑅𝑖 from twice the preceding radar return signal 𝑅𝑖−1, and then 
adding the radar return signal from two locations earlier 𝑅𝑖−2. The 
purpose of this procedure is to efficiently reduce unnecessary elements 
and unwanted distortions that are inherent in the original data. The 
output signal, denoted as 𝑅𝑜𝑢𝑡𝑝𝑢𝑡, demonstrates a finer representation 
of the radar response, resulting in improved clarity and coherence. 
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The amplified signal is then appropriate for conducting more compre-
hensive analysis and deriving significant interpretations. The practical 
application of the equation is shown in Fig.  3, which presents the radar 
scan before and after implementing the pulse canceller approach. The 
Fig.  3(b) shows how this mathematical alteration helps to produce a 
more distinct and visually informative radar signal.

3.2.3. Peak detection for gait cycle identification
After effectively removing extraneous data from the radar dataset, 

the identification of the gait cycle was achieved by the utilization of 
peak detection technique. The application of this technique facilitated 
the identification of noteworthy events occurring during the gait cycle 
within the radar data. Each identified peak represents an important 
event that occurred at a notable point in the gait cycle. In order to 
enhance the process of peak detection, the radar signal was partitioned 
into two different segments based on columns. A threshold of 0.9e5 was 
established for the first half of the signal. This higher threshold was 
selected in order to capture the significantly stronger signals closer to 
the radar. In contrast, the latter part of the signal, which corresponds to 
higher distances from the radar, had a lower threshold of 0.35e5. This 
modification adjusted for the decrease in signal amplitude caused by 
increasing distance from the radar. Gait-related signals can be identified 
by peaks in each column that exceed these set thresholds. The peak 
detection condition is defined in Eq.  (2). 
𝑃 =

{

𝑡 ||
|

𝑆𝑐 (𝑡) > 𝑇𝑐 ∧ 𝑆𝑐 (𝑡) > 𝑆𝑐 (𝑡 − 1) ∧ 𝑆𝑐 (𝑡) > 𝑆𝑐 (𝑡 + 1)
}

(2)

where 𝑆𝑐 (𝑡) is the signal at time 𝑡 for column 𝑐, and 𝑇𝑐 is the empirically 
defined threshold for that region. Peaks are required to be local maxima 
and spaced by a minimum time interval to ensure detection of distinct 
gait events. No peak smoothing was applied to preserve fine-grained 
motion details.

These threshold values were empirically chosen based on iterative 
testing on a representative dataset. A sensitivity analysis was conducted 
where thresholds were varied by ±20%, and it was observed that the 
selected values (0.9e5 and 0.35e5) provided the best trade-off between 
eliminating false positives and retaining genuine gait cycle peaks. This 
empirical validation supports the robustness and generalizability of 
the chosen thresholds. Fig.  4 presents the detected peaks within the 
clutter-removed radar data, serving as a visual representation of the 
effectiveness of the peak detection procedure.

The gait cycle is a significant temporal segment within the radar sig-
nal, which includes the physiological activity associated with walking. 
The gait process is defined by crucial events, that are identified as peaks 
in the radar signal. A window of size 111 was used, centered around 
each detected peak, to accurately capture the gait cycle. The determina-
tion of the window size was based on empirical study findings [49] that 
suggest the average steps length of an individual is around 76.2 cm, 
that corresponds to approximately ≈111 columns in the radar signal. 
Although the average step length of 76.2 cm is referenced from [49], 
which is based on Western population data, this estimate may not 
precisely reflect the anthropometric characteristics of the Pakistani 
cohort in this study. To assess its suitability, a visual inspection of 
radar-derived gait cycles was conducted across representative samples. 
The observed average step lengths ranged between 73 cm and 77 cm, 
demonstrating close agreement with the cited value. Therefore, the 
selected window size of 111 columns (≈76.2 cm) is considered appro-
priate for capturing the gait cycle in the present dataset and ensures 
methodological consistency without introducing significant deviation.

Determining the initial and final indices for the window required a 
detailed method. At the beginning, the window is made precise and 
limited to the area of the data, so as not to go outside and make 
mistakes in radar interpretation. To get started, the index of the peak 
is decreased by half the width of the window. This makes it possible 
for the window to pick up the radar data, as well as to feature data 
from before the peak within its set boundary. The strategy helps enclose 
vital gait information while keeping any extra data taken beyond the 



A.A. Saleem et al. Array 27 (2025) 100477 
Fig. 3. Illustration of pulse canceler, (a) Radar scan before pulse canceler, and (b) Radar scan after application of pulse canceler.
Fig. 4. Radargram with detected peaks.

scanner’s range or incidents at the window edge to a minimum. The 
procedure for ending the index is the same: increase the found peak’s 
index by half the set window’s size. Using this method, the radar 
window tracks what happens after the peak, but makes sure it does 
not cause the total amount of radar columns to be exceeded. Using 
the computed indices as the limits properly determines the place where 
the peak is detected. As a result, the system can pull out the necessary 
information for study, thus cutting down the risks of errors during data 
retrieval or indexing. The window is centrally positioned on the peak, 
and data points that fall within the window are selected to generate 
the gait cycles, as represented in Fig.  5. This procedure is executed 
in an iterative manner for each peak that has been discovered in the 
radar data, leading to the creation of a set of discrete windows that 
correspond to gait cycles.

3.2.4. Spectral feature extraction
Once the gait cycles were identified, a variety of unique attributes 

were retrieved from each individual cycle. The most important of 
these characteristics is the peak amplitude of the gait cycle, which 
is the highest value prevalent to each cycle. This metric offers useful 
information on the magnitude of the gait response throughout the 
gait cycle, facilitating the understanding of physiological processes. To 
delve deeper into gait activity, the frequency and phase components of 
each gait cycle were analyzed using the Fast Fourier Transform (FFT) 
approach. Through the application of FFT analysis, it becomes feasible 
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to detect the distinct frequency components of the gait signal. The 
use of this analytical approach enables the detection of noteworthy 
frequency elements that align with gait patterns. Concurrently, the 
phase information of each gait cycle was acquired by FFT analysis. This 
phase data is a useful tool for examining the temporal properties of 
gait function, providing insight into the timing and synchronization of 
different frequency components within the gait signal. The retrieved 
features from the gait cycles were subsequently computed as the aver-
age across all identified gait cycles. A complete representation of the 
gait signals collected from the radar scan is given by this thorough 
averaging.

The key attributes of each radar scan were derived by utilizing 
the average amplitude, frequency, and phase. These attributes encom-
pass energy entropy (EE), spectral entropy (STE), root-mean-square 
(RMS), spectral centroid frequency (SCF), spectral kurtosis (SK), spec-
tral skewness (SKNS), spectral roll-off (SR), spectral decrease (SD), 
spectral flatness (SFLT), spectral contrast (SC), spectral flux (SF), spec-
tral spread (SSP), and spectral slope (SSL). For more information about 
these features readers are directed to Lalitha et al. [50], Yantorno 
et al. [51], Siddiqui et al. [52], Tamarit et al. [53], Siddiqui et al. 
[54], Hosseinzadeh and Krishnan [55], Antoni [56] and Krishna et al. 
[57]. The selection of 13 spectral features for characterizing radar-
derived gait cycles is justified by their proven efficacy in capturing 
essential frequency-domain characteristics of periodic signals, coupled 
with their computational efficiency and interpretability. Gait, being an 
inherently rhythmic and repetitive motion, manifests distinct patterns 
in the frequency domain, which these features effectively quantify. 
Attributes such as Spectral Centroid Frequency, Spectral Flux, and 
Spectral Spread directly reflect the core rhythm and variability of 
walking. Meanwhile, measures like RMS, Energy Entropy, Spectral 
Kurtosis, and Spectral Flatness provide valuable insights into the overall 
signal power, energy distribution, and the consistency of the spectral 
shape, all of which are critical for distinguishing different gait pat-
terns. While wavelet-based or hybrid time-frequency features excel at 
localizing non-stationary events in both time and frequency, our chosen 
spectral features offer a robust and computationally lean approach to 
characterize the quasi-periodic nature of gait signals within the defined 
analysis windows. This balance of detailed frequency information and 
practical computational demands makes them a suitable and effective 
choice for this radar-based gait analysis. Prior studies have demon-
strated the reliability of similar features in related tasks. For instance, 
Saleem et al. [43] employed spectral features for gender classification 
using UWB radar. In another study [42], micro-Doppler signatures 
analyzed through frequency-based features for gender classification. 
Furthermore, accelerometer-based studies such as Khabir et al. [41] 
and Sabir et al. [20] also relied on spectral metrics to successfully 
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Fig. 5. Clutter removed radargram with detected gait cycles.
distinguish gender-related gait patterns. While wavelet-based or hybrid 
time-frequency features may offer enhanced resolution, the selected 
spectral features provide a balanced trade-off between discriminative 
power and computational efficiency. Within the framework of classifi-
cation, a distinct label was assigned to each set of extracted features, 
serving as an indicator of the class to which the relevant radar scan be-
longs. Within this particular framework, the Male category was denoted 
by the numerical label 0, whilst the Female category was denoted by 
the numerical label 1. In order to enable subsequent analysis, the fea-
ture sets and their accompanying labels were carefully documented and 
saved in a CSV file. The implementation of this approach guarantees the 
presence of well-arranged and well labeled data that can be utilized in 
following phases of analysis and machine learning.

3.3. Feature transformation

The objective of this subsection is to enhance the quality and 
interpretability of the extracted features through dimensionality reduc-
tion. Exploring a dataset consisting of spectral features necessitates 
visualizing the interrelationships between these features; however, it 
is challenging to directly visualize a high-dimensional dataset due 
to human perceptual limitations. However, there are effective solu-
tions available to address this difficulty. These strategies involve the 
use of dimensionality reduction techniques and other visualization 
approaches to extract significant insights from complex datasets. A 
frequently employed strategy involves the utilization of dimensionality 
reduction techniques such as Principal Component Analysis (PCA) or 
t-distributed Stochastic Neighbor Embedding (t-SNE) to convert the 
data into a lower-dimensional space, often two-dimensional or three-
dimensional, while retaining important structural characteristics. In 
this study, PCA is used to extract the principal components of the 
dataset. These components are obtained as linear combinations of the 
original spectral features. The initial five principal components hold 
particular significance since they effectively reflect the most prominent 
patterns of variance present within the dataset. A pair plot illustrated in 
Fig.  6, a visualization tool that enables the examination of relationships 
between pairs of dimensions, is built using these principal components.

The pair plot shown in Fig.  6 reveals that the original spectral 
features exhibit substantial correlation, which can hinder the ability of 
ML algorithms to learn meaningful discriminative patterns. To address 
this issue, a novel feature transformation and integration approach was 
introduced that enhances the separability of classes by creating a more 
discriminative and less redundant feature space. This is achieved by 
combining the non-linear transformation capabilities of a Feedforward 
Artificial Neural Network (FANN) with the probabilistic outputs of a 
Random Forest (RF) classifier. This fusion leverages the complementary 
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strengths of both models—FANN as a deep feature extractor and RF as 
a robust ensemble learner.

In our proposed methodology, each sample’s original spectral fea-
ture vector 𝐱 ∈ R𝐷 is first passed through a multi-layer FANN. The 
architecture comprises four hidden layers with 1024, 512, 256, and 32 
neurons respectively, each followed by a ReLU activation function as 
given in 2. The transformation can be expressed as: 𝐡0 = 𝐱, followed 
by 𝐡𝑘 = ReLU(𝑊𝑘𝐡𝑘−1 + 𝐛𝑘) for 𝑘 = 1,… , 𝐿, where 𝐿 = 4 is the 
number of hidden layers. The output from the final layer 𝐡𝐿 serves 
as the transformed feature vector 𝐟𝐹𝐴𝑁𝑁 ∈ R𝐷𝐹𝐴𝑁𝑁 . This process is 
repeated for all 𝑁 samples to yield the transformed feature matrix 
𝐹𝐹𝐴𝑁𝑁 ∈ R𝑁×𝐷𝐹𝐴𝑁𝑁 .

Simultaneously, a RF classifier is trained using the original 13 
spectral features. This model, configured with max_depth=10, n_
estimators=10, and random_state=0, outputs a class probabil-
ity vector 𝐩𝑅𝐹 (𝐱) ∈ R𝐶 for each input 𝐱, where 𝐶 denotes the number 
of classes. These probability vectors represent the RF’s confidence for 
each class, based on the aggregated votes across its ensemble of trees. 
For all samples, the corresponding class probability matrix 𝑃𝑅𝐹 ∈ R𝑁×𝐶

is obtained.
The final feature representation is created by horizontally concate-

nating the FANN-transformed features with the RF class probabilities. 
For a single sample, this results in a fused feature vector 𝐟𝑓𝑢𝑠𝑒𝑑 =
[𝐟𝐹𝐴𝑁𝑁 𝐩𝑅𝐹 (𝐱)] ∈ R𝐷𝐹𝐴𝑁𝑁+𝐶 , and collectively across all samples, the 
complete fused feature matrix 𝐹𝑓𝑢𝑠𝑒𝑑 = [𝐹𝐹𝐴𝑁𝑁 𝑃𝑅𝐹 ] ∈ R𝑁×(𝐷𝐹𝐴𝑁𝑁+𝐶)

is formed. The distribution of the fused features is visualized in Fig.  7.
This transformation-fusion pipeline brings together distinct yet com-

plementary sources of information. The FANN serves to capture com-
plex, non-linear relationships between the original spectral features and 
class labels, effectively acting as a non-linear dimensionality reduction 
tool. The RF’s class probability outputs, on the other hand, introduce a 
decision-level perspective that encodes the classifier’s uncertainty and 
learned boundaries in a structured way. The combined representation 
allows downstream classifiers to benefit from both abstract feature em-
beddings and ensemble-based confidence scores, improving the overall 
robustness and generalization ability of the model. Importantly, this 
fusion does not introduce any data leakage or bias, as the RF is trained 
independently on raw spectral inputs and contributes only probabilistic 
outputs rather than labels or ground truth information.

The specific configuration of the FANN was determined through 
extensive empirical tuning. Architectures with varying numbers of 
layers and neurons were tested, with performance evaluated based on 
classification accuracy, training stability, and computational efficiency. 
The selected 1024-512-256-32 layout offered the best balance be-
tween expressive power and model simplicity. The gradual reduction in 
layer size encourages hierarchical abstraction and enforces a bottleneck 
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Fig. 6. Pair plot of the first five principal components of the spectral feature dataset.
Table 2
Architecture of the feedforward artificial neural network.
 Layer Activation function Neurons 
 Input None 𝑋  
 Hidden ReLU 1024  
 Hidden ReLU 512  
 Hidden ReLU 256  
 Output ReLU 32  

effect that helps in filtering out redundant information. FANN was 
selected over autoencoders and other manifold learning techniques due 
to its suitability for supervised feature learning. Unlike autoencoders, 
which primarily aim to reconstruct input data, FANN learns repre-
sentations optimized for classification. Its feedforward structure, when 
properly tuned, offers effective non-linear transformations with lower 
complexity, making it a practical choice for this task.

The pair plot of the first five principal components is depicted in 
Fig.  8, showcasing the altered feature set. The presented visualization 
provides compelling observations, unveiling a significant alteration in 
the attributes of the data following its transformation. Significantly, 
in comparison to their initial condition, the features currently demon-
strate a noticeable level of distinctiveness, suggesting a decrease in the 
degree of strong correlation. This transformation-driven improvement 
has the potential to significantly impact subsequent analyzes and ML 
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models, enabling the extraction of more meaningful and distinguishable 
data patterns.

3.3.1. Numerical example of FANN-RF feature fusion process
To clarify the functionality of the proposed FANN-RF framework, 

we present a step-by-step numerical example using a simplified gait 
feature vector. Suppose a preprocessed gait sample extracted from the 
spectral domain is represented by the following feature vector:

𝐱 = [0.12, 0.45, 0.30, 0.58, 0.21]

This low-dimensional feature vector is used here for illustrative 
purposes; in practice, the actual feature space contains significantly 
more dimensions.

Step 1: FANN feature transformation. The feature vector 𝐱 is passed 
through a trained Feedforward Artificial Neural Network (FANN). Sup-
pose the FANN has one hidden layer with the following weights and 
biases:

- Hidden layer weights (𝑊1):
[

0.1 −0.2 0.3 0.5 −0.1
−0.4 0.2 0.1 −0.3 0.4

]

- Hidden layer biases (𝑏 ): [0.05,−0.03]
1
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Fig. 7. Transformed feature set.
Fig. 8. Pair plot of the first five principal components of the transformed features dataset.
The activation function used is ReLU. The output of the hidden layer 
is:

𝐡 = ReLU(𝑊1 ⋅ 𝐱 + 𝑏1) = ReLU

×
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= ReLU
([

0.285
−0.188

])

=
[

0.285
0

]

This transformed feature vector 𝐡 = [0.285, 0] is the high-level 
representation learned by the FANN.

Step 2: Random forest classification. The transformed vector is then 
fed into a trained Random Forest classifier. Suppose the RF classifier 
outputs the following class probabilities:

𝑃 (Male) = 0.78, 𝑃 (Female) = 0.22
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Fig. 9. Distribution of the labels in the dataset.

Based on this result, the classifier assigns the ‘‘Male’’ label to the 
input instance with high confidence.

This example illustrates how the FANN network extracts abstract 
nonlinear patterns from the spectral features, reducing redundancy and 
improving separability. The RF classifier then utilizes its ensemble de-
cision structure to robustly classify the instance, ultimately enhancing 
the overall system performance.

4. Results and discussions

This section presents the experimental outcomes of the proposed 
FANN-RF approach for gender classification using gait data captured 
via UWB radar. It includes dataset details, baseline and enhanced 
classification performance, cross-validation results, and a comparison 
with existing studies. Additionally, the implications of the findings, 
limitations, and directions for future work are discussed in depth. 
The dataset comprises a total of 1630 instances, with 880 instances 
corresponding to males and 750 instances corresponding to females. 
The distribution of the dataset, shown by a pie chart in Fig.  9, reveals 
that the male class accounts for 54% of the instances, demonstrating 
a comparatively greater representation. Conversely, the female class 
makes up 46% of the occurrences. The distribution of gender within the 
dataset is emphasized, serving as a crucial basis for later analysis and 
classification endeavors. The dataset was divided into two sets using 
a 70–30 split. Specifically, 70% of the instances were allocated for 
training purposes, while the remaining 30% were reserved for testing. 
The process of dividing the data into subsets guarantees that a signifi-
cant proportion of the data is allocated for training the classification 
model. This allocation allows the model to acquire knowledge and 
make generalizations based on the patterns found in the gait attributes. 
The testing subset that is reserved acts as a separate set for evaluation, 
enabling the assessment of the model’s performance on data that it has 
not been exposed to previously. This allows for a reliable measure of 
the model’s ability to classify accurately.

A comprehensive evaluation of the classification task was conducted 
using a variety of different machine learning classifiers. The classi-
fiers consisted of the passive-aggressive classifier (PAC), Hist Gradient 
Boosting Classifier (HGBC), CatBoost, LGBM, XGBoost, Ridge classifier 
(RC), Linear Discriminant Analysis (LDA), RF, MLP classifier, and Ex-
traTrees classifier (ETC). To improve the performance of these models, 
an exhaustive grid search was performed to precisely tweak the hy-
perparameters for each classifier. As a result of this procedure, the 
ideal hyperparameters were identified and are listed in Table  3. The 
primary objective of this rigorous approach for hyperparameter tuning 
is to optimize the performance of the classifiers. This optimization 
process ultimately enables precise gender classification by leveraging 
the retrieved gait features.
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Table 3
Hyperparameters of the classifiers.
 Classifier Parameters  
 PAC max_iter = 100, random_state = 0  
 HGBC max_iter = 100, random_state = 0  
 CatBoost iterations = 200, depth = 10, 

learning_rate = 0.1, loss_function = 
‘Logloss’

 

 LGBM Default  
 XGBoost n_estimators = 1000, learning_rate = 0.1, 

max_depth = 6, objective = 
‘binary:logistic’

 

 RC alpha = 1.0  
 LDA Default  
 RF random_state = 142, max_depth = 150, 

n_estimators = 150
 

 MLP random_state = 142, activation = ‘tanh’, 
max_iter = 200

 

 ETC n_estimators = 100, max_depth = 200, 
random_state = 0

 

Table 4
Test accuracy (%) of classifiers on original spectral features (baseline).
 Classifier Test accuracy (%) 
 PAC 54.29  
 HGBC 62.27  
 CatBoost 62.27  
 LGBM 61.04  
 XGBoost 63.80  
 RC 61.04  
 LDA 61.35  
 RF 59.20  
 MLP 62.88  
 ETC 58.28  

4.1. Baseline performance on original features

To establish a reference point for evaluating the effectiveness of the 
proposed FANN-RF fusion strategy, an experiment was conducted using 
ten standard ML classifiers trained directly on the original spectral 
features as shown in Table  4. The results reveal relatively modest 
classification performance, with the highest test accuracy of 63.80% 
achieved by XGBoost, followed by MLP at 62.88% and CatBoost and 
HGBC both at 62.27%. In contrast, the RF classifier achieved only 
59.20% accuracy on the raw features. These results suggest that the 
original spectral features, though informative, contain redundancies 
and nonlinear correlations that are not easily separable by standard 
classifiers. This motivates the need for advanced feature transforma-
tion. The proposed FANN-RF feature fusion strategy addresses this by 
leveraging the nonlinear feature learning capacity of a FANN alongside 
the probabilistic decision boundaries derived from RF classification 
probabilities.

4.2. Performance on FANN-RF fusion features

The evaluation of different ML classifiers on a dataset that involves 
gender classification using gait data yields valuable insights regarding 
the effectiveness of each model. The evaluation criteria employed, 
namely Accuracy, Precision, Recall, and F1-score, provide an in-depth 
understanding of the classifiers’ capabilities. The classification metrices 
of different classifiers in Table  5.

The results presented in Table  5 and visualized in Fig.  10 em-
phasized a number of exceptional performers. The CatBoost algorithm 
exhibited remarkable accuracy, with a score of 94.27%. Additionally, it 
achieved precision, recall, and F1-score values of 94% that were well-
aligned. The RF exhibited notable consistency and accuracy, achieving 
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Fig. 10. Visualization of performance metrics of classifiers.
 

Table 5
Performance metrics of classifiers.
 Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) 
 PAC 91.61 92 91 92  
 HGBC 93.25 93 93 93  
 CatBoost 94.27 94 94 94  
 LGBM 93.45 93 93 93  
 XGBoost 92.84 93 93 93  
 RC 93.45 94 93 93  
 LDA 93.66 94 93 94  
 RF 94.68 95 95 95  
 MLP 94.06 94 94 94  
 ETC 94.47 94 94 94  

Table 6
Cross validation results of the classifiers.
 Classifier Cross validation score 
 & Standard deviation  
 PAC 0.90 ± 0.04  
 HGBC 0.92 ± 0.02  
 CatBoost 0.92 ± 0.02  
 LGBM 0.92 ± 0.01  
 XGBoost 0.92 ± 0.02  
 RC 0.92 ± 0.02  
 LDA 0.92 ± 0.02  
 RF 0.93 ± 0.01  
 MLP 0.93 ± 0.01  
 ETC 0.92 ± 0.02  

a performance of 94.68%. Additionally, it demonstrated good precision, 
recall, and F1-score, all of which were at 95%. In a similar vein, the ETC 
algorithm demonstrated strong predictive skills, achieving an accuracy 
rate of 94. 47% with corresponding precision, recall, and F1 scores of 
94%.

4.2.1. Kfold cross validation
The researchers performed K-fold cross-validation in order to eval-

uate the reliability and consistency of the classifiers. The validation 
method utilized a total of five folds. Table  6 summarizes the validation 
results. Furthermore, Fig.  11 presents a visual depiction of the results. 
The bar chart in the figure represents the average accuracy of the clas-
sifiers, while the error bars indicate the standard deviations associated 
with these accuracies.

The results presented in Table  6 and visualize in Fig.  11 that PAC 
shows a consistent cross-validation score of 0.90 ± 0.04, indicating its 
effectiveness in the task of gender classification. The HGBC, CatBoost, 
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LGBM, XGBoost, RC, ETC, and LDA consistently shows good perfor-
mance, as indicated by their cross-validation scores of 0.92 ± 0.02. 
These values highlight the models’ ability to achieve a balanced preci-
sion and recall. Significantly, the RF and MLP models demonstrated ex-
ceptional performance, attaining a cross-validation score of 0.93 ± 0.01.
The classifiers exhibited remarkable consistency, successfully recogniz-
ing subtle patterns associated to gender.

From the classification results in Table  5 and the validation scores 
in Table  6, the Random Forest (RF) classifier demonstrates the highest 
accuracy (94.68%) and strong precision, recall, and F1-score values 
(all at 95%). Additionally, it achieved the highest cross-validation 
score (0.93 ± 0.01), indicating both effectiveness and consistency. 
Among the evaluated classifiers, Random RF achieved the highest 
performance. This can be attributed to its ensemble-based structure, 
which combines multiple decision trees to reduce overfitting and han-
dle high-dimensional, nonlinear feature spaces effectively. The FANN-
transformed features benefit from RF’s ability to model complex inter-
actions without requiring intensive parameter tuning. In contrast, Cat-
Boost and MLP also demonstrated strong results but performed slightly 
lower than RF. CatBoost, while powerful, is more sensitive to fine-
tuning of categorical feature handling and hyperparameters. MLP, be-
ing a neural network, may require more extensive training data or opti-
mization to reach peak generalization. The consistent yet marginal dif-
ferences across models suggest the robustness of the extracted features 
and confirm the reliability of the proposed pipeline.

4.3. Comparison with existing studies

This section compares the proposed study with previous research 
that employed various gait-based approaches to gender classification. 
Table  7 summarizes radar technology (if applicable), number of sub-
jects, classification method, and accuracy achieved. Kim et al. [42] 
employed frequency-modulated radar with micro-Doppler signatures 
and achieved high accuracy (96.7%) but only with 20 subjects, limiting 
generalizability. Similarly, Saleem et al. [43] used the UWB radar and 
achieved 93. 6% precision with 181 subjects. The proposed study also 
uses UWB radar, but achieves a slightly better performance of 94.68% 
using 163 participants, utilizing robust spectral feature extraction and 
feature fusion techniques.

Several vision- and sensor-based studies have also demonstrated 
high accuracies. For instance, the study in [25] used Microsoft Kinect 
and achieved 97.5% accuracy through a statistical model. Likewise,
Azhar et al. [26] combined Kinect-based joint features with logistic 
regression, reaching 98.0%. These methods, while highly accurate, are 
limited by the requirement of line-of-sight and sensitivity to occlusions.
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Fig. 11. Visualization of cross validation results of the classifiers with error bars.
Table 7
Comparison with existing gait-based gender classification studies.
 Study Modality/Sensor No. of subjects Accuracy 
 Kim et al. [42] FMCW Radar 20 96.7%  
 Saleem et al. [43] UWB Radar 181 93.6%  
 Azhar et al. [25] Kinect + Statistical Model Not specified 97.5%  
 Azhar et al. [26] Kinect + Logistic Regression Not specified 98.0%  
 Jain and Kanhangad [39] Smartphone Sensors + Bagging Not specified 94.44%  
 Sabir et al. [20] Smartphone Sensors + SVM/RNN-LSTM Not specified 94.11%  
 Liu et al. [37] CNN + SVM (CASIA-B) Not specified 87.94%  
 Mawlood and Sabir [47] GEI + Entropy + SVM Not specified 97.3%  
 Proposed study UWB Radar + Spectral Feature Fusion 163 94.68%  
Smartphone-based methods such as in [20,39] extracted accelerom-
eter and gyroscope features to classify gender, achieving 94.44% and 
94.11% accuracy respectively. These methods are promising due to 
their portability but often lack consistency in unconstrained environ-
ments. Hybrid methods, such as CNN+SVM in [37], achieved 87.94% 
using CASIA-B data, while Mawlood and Sabir [47] introduced entropy-
based gait features and reached up to 97.3% using SVM. Despite high 
performance, these models typically rely on controlled datasets and are 
not tested in real-time scenarios.

The proposed study strikes a balance between accuracy, real-world 
feasibility, and dataset diversity. It uses UWB radar, a modality less 
affected by lighting, occlusion, or clothing variation and integrates 
signal processing with learning-based feature fusion to ensure robust 
gender classification.

The proposed approach demonstrates competitive performance
compared to both vision-based and sensor-based methods. Its reliance 
on UWB radar enhances robustness to environmental factors, and its 
integration of advanced signal processing and machine learning makes 
it well-suited for real-world applications.

4.4. Discussion

The results presented in this study demonstrate the superior effec-
tiveness of the proposed FANN-RF fusion approach for gender clas-
sification based on gait using UWB radar. The baseline evaluation 
on original spectral features (Table  4) showed that even after care-
ful hyperparameter tuning, conventional classifiers achieved relatively 
modest accuracy—maximally 63.80% by XGBoost. This indicates that 
the raw features are not sufficiently discriminative due to underlying 
nonlinearity, noise, and redundancy. In contrast, the application of the 
FANN-RF pipeline led to a significant performance boost, with Random 
Forest achieving a test accuracy of 94.68%, along with balanced preci-
sion, recall, and F1-scores of 95%. The consistent improvements across 
all classifiers when using FANN-RF features (Table  5) and their stable 
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cross-validation performance (Table  6) confirm the effectiveness and 
robustness of the proposed feature transformation strategy.

The advantages of the FANN-RF fusion approach stem from its dual 
strengths, FANN serves as a nonlinear feature learner, extracting high-
level discriminative representations from spectral gait data, and RF uses 
its ensemble structure to capture complex decision boundaries without 
overfitting, making it well-suited for high-dimensional transformed 
features. This combination allows for effective exploitation of both 
spectral and structural characteristics of gait signals, which are difficult 
to separate using standard classifiers on raw features.

However, there are several limitations that must be acknowledged. 
First, while the dataset size (163 subjects, 1630 samples) is reason-
able, the generalizability to more diverse populations e.g., varying age 
groups, body types, walking conditions, or cultural gait differences 
has not been explored. Second, the study uses only spectral features 
extracted from the range-Doppler domain, which might overlook other 
spatial–temporal cues useful for classification. Third, although FANN-
RF performs well, it introduces an additional processing layer that 
might be computationally heavier than simpler classifiers in real-time 
applications.

Future work will focus on expanding the dataset to include more 
diverse subjects (age, gait types, walking conditions) to improve real-
world generalizability. A feature ablation study will be conducted 
to evaluate alternative feature types (e.g., wavelet or hybrid time-
frequency features) for enhanced performance. To improve
interpretability, Explainable AI (XAI) methods like SHAP and LIME will 
be integrated, enabling insights into how FANN-transformed features 
relate to gait traits such as cadence or stride symmetry. For reference, 
similar approaches have been applied in biosignal analysis by Mowla 
et al. [58]. Additionally, future work will incorporate multimodal 
features and adapt the framework for real-time use on embedded 
systems for applications in healthcare and surveillance.

While the primary focus of this study was on improving classifica-
tion accuracy for gender identification using gait features, the aspect of 
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security and resistance to adversarial attacks remains an important con-
sideration for real-world deployment. Radar-based biometric systems, 
including gait recognition, can be susceptible to spoofing, adversarial 
perturbations, or data injection attacks, especially in surveillance or 
healthcare applications. Although this study does not include a ded-
icated security analysis, future work will explore the robustness of 
the proposed FANN-RF framework under adversarial conditions. Tech-
niques such as adversarial training, noise resilience testing, and signal 
perturbation analysis will be considered to ensure the system maintains 
integrity and reliability under potential attack scenarios. Addressing 
these concerns is vital for ensuring trust and safety in privacy-sensitive 
environments.

5. Conclusion

The classification of gender is an essential aspect within various 
domains, such as security and healthcare. Biometric techniques, which 
include facial and voice recognition, activity analysis, and gait recog-
nition, have been utilized for the purpose of gender classification. 
However, these methodologies encounter ongoing challenges such as 
obstacles caused by body parts, the need for extensive computational 
resources, and errors in recognition, ultimately affecting their effective-
ness and accuracy. To overcome these issues this study explored the 
field of gender classification by utilizing gait data obtained through 
the use of Ultra-Wideband radar technology in an innovative way. 
The initial phase of the investigation involved the thorough collecting 
of data from an extensive population of 163 people. The raw radar 
data was subjected to a number of preprocessing procedures, including 
clutter reduction and peak recognition, in order to extract the rele-
vant information related to the gait cycle. The gait cycle data was 
used to retrive spectral features. The spectral features that were ex-
tracted a transformative procedure, utilizing both Feed Forward Neural 
Networks and Random Forests, in order to augment their ability to 
differentiate between different classes. Moreover, the resilience of the 
system was demonstrated by its strong cross-validation scores of 0.93. 
Future research will focus on deploying the models in practical, real-
world settings where environmental and demographic variations are 
more pronounced. This includes investigating the robustness of the 
approach across diverse populations by examining cross-cultural dif-
ferences in gait, age-related gait variations, and the impact of different 
clothing types, which may subtly affect radar signatures. Additionally, 
assessing performance on data from physically disabled individuals will 
be important to ensure broader applicability. Expanding the dataset 
to include a larger and more representative sample is essential to im-
prove model generalization and fairness. Moreover, exploring advanced 
deep learning architectures, such as convolutional neural networks and 
transformer-based models tailored for time-series radar data, could 
further enhance classification accuracy and adaptability in dynamic 
environments
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