Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Artículos y libros
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance. metadata Kanwal, Khadija; Ahmad, Khawaja Tehseen; Shabir, Aiza; Jing, Li; Garay, Helena; Prado González, Luis Eduardo; Karamti, Hanen y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, helena.garay@uneatlantico.es, uis.prado@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2025) Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization. Scientific Reports, 15 (1). ISSN 2045-2322

[img] Texto
s41598-025-90616-w.pdf
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Descargar (9MB)

Resumen

The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance.

Tipo de Documento: Artículo
Palabras Clave: Features fusion; Composite structure; Architectural bonding; Algorithmic channelizing; Deep learning
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Producción Científica
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Artículos y libros
Universidad de La Romana > Investigación > Producción Científica
Depositado: 14 Mar 2025 23:30
Ultima Modificación: 14 Mar 2025 23:30
URI: https://repositorio.unic.co.ao/id/eprint/17140

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/26722/1/nutrients-18-00257.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Innovative Application of Chatbots in Clinical Nutrition Education: The E+DIEting_Lab Experience in University Students

Background/Objectives: The growing integration of Artificial Intelligence (AI) and chatbots in health professional education offers innovative methods to enhance learning and clinical preparedness. This study aimed to evaluate the educational impact and perceptions in university students of Human Nutrition and Dietetics, regarding the utility, usability, and design of the E+DIEting_Lab chatbot platform when implemented in clinical nutrition training. Methods: The platform was piloted from December 2023 to April 2025 involving 475 students from multiple European universities. While all 475 students completed the initial survey, 305 finished the follow-up evaluation, representing a 36% attrition rate. Participants completed surveys before and after interacting with the chatbots, assessing prior experience, knowledge, skills, and attitudes. Data were analyzed using descriptive statistics and independent samples t-tests to compare pre- and post-intervention perceptions. Results: A total of 475 university students completed the initial survey and 305 the final evaluation. Most university students were females (75.4%), with representation from six languages and diverse institutions. Students reported clear perceived learning gains: 79.7% reported updated practical skills in clinical dietetics and communication were updated, 90% felt that new digital tools improved classroom practice, and 73.9% reported enhanced interpersonal skills. Self-rated competence in using chatbots as learning tools increased significantly, with mean knowledge scores rising from 2.32 to 2.66 and skills from 2.39 to 2.79 on a 0–5 Likert scale (p < 0.001 for both). Perceived effectiveness and usefulness of chatbots as self-learning tools remained positive but showed a small decline after use (effectiveness from 3.63 to 3.42; usefulness from 3.63 to 3.45), suggesting that hands-on experience refined, but did not diminish, students’ overall favorable views of the platform. Conclusions: The implementation and pilot evaluation of the E+DIEting_Lab self-learning virtual patient chatbot platform demonstrate that structured digital simulation tools can significantly improve perceived clinical nutrition competences. These findings support chatbot adoption in dietetics curricula and inform future digital education innovations.

Producción Científica

Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Kilian Tutusaus mail kilian.tutusaus@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Arturo Ortega-Mansilla mail arturo.ortega@uneatlantico.es, Thomas Prola mail thomas.prola@uneatlantico.es, Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es,

Elío Pascual

<a href="/26964/1/s44196-025-01123-9_reference.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Suicide Ideation Detection Using Social Media Data and Ensemble Machine Learning Model

Identifying the emotional state of individuals has useful applications, particularly to reduce the risk of suicide. Users’ thoughts on social media platforms can be used to find cues on the emotional state of individuals. Clinical approaches to suicide ideation detection primarily rely on evaluation by psychologists, medical experts, etc., which is time-consuming and requires medical expertise. Machine learning approaches have shown potential in automating suicide detection. In this regard, this study presents a soft voting ensemble model (SVEM) by leveraging random forest, logistic regression, and stochastic gradient descent classifiers using soft voting. In addition, for the robust training of SVEM, a hybrid feature engineering approach is proposed that combines term frequency-inverse document frequency and the bag of words. For experimental evaluation, “Suicide Watch” and “Depression” subreddits on the Reddit platform are used. Results indicate that the proposed SVEM model achieves an accuracy of 94%, better than existing approaches. The model also shows robust performance concerning precision, recall, and F1, each with a 0.93 score. ERT and deep learning models are also used, and performance comparison with these models indicates better performance of the SVEM model. Gated recurrent unit, long short-term memory, and recurrent neural network have an accuracy of 92% while the convolutional neural network obtains an accuracy of 91%. SVEM’s computational complexity is also low compared to deep learning models. Further, this study highlights the importance of explainability in healthcare applications such as suicidal ideation detection, where the use of LIME provides valuable insights into the contribution of different features. In addition, k-fold cross-validation further validates the performance of the proposed approach.

Producción Científica

Erol KINA mail , Jin-Ghoo Choi mail , Abid Ishaq mail , Rahman Shafique mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Isabel de la Torre Diez mail , Imran Ashraf mail ,

KINA

<a href="/27153/1/fpls-16-1720471.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

CNNAttLSTM: an attention-enhanced CNN–LSTM architecture for high-precision jackfruit leaf disease classification

Introduction: Jackfruit cultivation is highly affected by leaf diseases that reduce yield, fruit quality, and farmer income. Early diagnosis remains challenging due to the limitations of manual inspection and the lack of automated and scalable disease detection systems. Existing deep-learning approaches often suffer from limited generalization and high computational cost, restricting real-time field deployment. Methods: This study proposes CNNAttLSTM, a hybrid deep-learning architecture integrating Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) units, and an attention mechanism for multi-class classification of algal leaf spot, black spot, and healthy jackfruit leaves. Each image is divided into ordered 56×56 spatial patches, treated as pseudo-temporal sequences to enable the LSTM to capture contextual dependencies across different leaf regions. Spatial features are extracted via Conv2D, MaxPooling, and GlobalAveragePooling layers; temporal modeling is performed by LSTM units; and an attention mechanism assigns adaptive weights to emphasize disease-relevant regions. Experiments were conducted on a publicly available Kaggle dataset comprising 38,019 images, using predefined training, validation, and testing splits. Results: The proposed CNNAttLSTM model achieved 99% classification accuracy, outperforming the baseline CNN (86%) and CNN–LSTM (98%) models. It required only 3.7 million parameters, trained in 45 minutes on an NVIDIA Tesla T4 GPU, and achieved an inference time of 22 milliseconds per image, demonstrating high computational efficiency. The patch-based pseudo-temporal approach improved spatial–temporal feature representation, enabling the model to distinguish subtle differences between visually similar disease classes. Discussion: Results show that combining spatial feature extraction with temporal modeling and attention significantly enhances robustness and classification performance in plant disease detection. The lightweight design enables real-time and edge-device deployment, addressing a major limitation of existing deep-learning techniques. The findings highlight the potential of CNNAttLSTM for scalable, efficient, and accurate agricultural disease monitoring and broader precision agriculture applications.

Producción Científica

Gaurav Tuteja mail , Fuad Ali Mohammed Al-Yarimi mail , Amna Ikram mail , Rupesh Gupta mail , Ateeq Ur Rehman mail , Jeewan Singh mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es,

Tuteja

<a class="ep_document_link" href="/27154/1/s41598-026-37191-w_reference.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

End-to-end emergency response protocol for tunnel accidents augmentation with reinforcement learning

Autonomous unmanned aerial vehicles (UAVs) offer cost-effective and flexible solutions for a wide range of real-world applications, particularly in hazardous and time-critical environments. Their ability to navigate autonomously, communicate rapidly, and avoid collisions makes UAVs well suited for emergency response scenarios. However, real-time path planning in dynamic and unpredictable environments remains a major challenge, especially in confined tunnel infrastructures where accidents may trigger fires, smoke propagation, debris, and rapid environmental changes. In such conditions, conventional preplanned or model-based navigation approaches often fail due to limited visibility, narrow passages, and the absence of reliable localization signals. To address these challenges, this work proposes an end-to-end emergency response framework for tunnel accidents based on Multi-Agent Reinforcement Learning (MARL). Each UAV operates as an independent learning agent using an Independent Q-Learning paradigm, enabling real-time decision-making under limited computational resources. To mitigate premature convergence and local optima during exploration, Grey Wolf Optimization (GWO) is integrated as a policy-guidance mechanism within the reinforcement learning (RL) framework. A customized reward function is designed to prioritize victim discovery, penalize unsafe behavior, and explicitly discourage redundant exploration among agents. The proposed approach is evaluated using a frontier-based exploration simulator under both single-agent and multi-agent settings with multiple goals. Extensive simulation results demonstrate that the proposed framework achieves faster goal discovery, improved map coverage, and reduced rescue time compared to state-of-the-art GWO-based exploration and random search algorithms. These results highlight the effectiveness of lightweight MARL-based coordination for autonomous UAV-assisted tunnel emergency response.

Producción Científica

Hafiz Muhammad Raza ur Rehman mail , M. Junaid Gul mail , Rabbiya Younas mail , Muhammad Zeeshan Jhandir mail , Roberto Marcelo Álvarez mail roberto.alvarez@uneatlantico.es, Yini Airet Miró Vera mail yini.miro@uneatlantico.es, Imran Ashraf mail ,

ur Rehman

<a href="/27156/1/s41598-025-29667-y.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Enhancing fault detection in new energy vehicles via novel ensemble approach

New energy vehicles (NEVs) has emerged as a sustainable alternative to conventional vehicles, however have unresolved reliability challenges due to their complex electronic systems and varying operating conditions. Faults in drivetrain and battery systems, occurring at rates up to 12% annually, present significant barriers to the widespread adoption of NEVs. This study proposes a robust fault detection framework that applies multiple machine learning and deep learning models to address these challenges. The research utilizes the benchmark NEV fault diagnosis dataset, which contains real-world sensor data from NEVs. The models tested include logistic regression, passive-aggressive classifier, ridge classifier, perceptron, gated recurrent unit (GRU), convolutional neural network, and artificial neural network. The proposed ensemble GRULogX model stands out among the implemented model, leveraging GRU with logistic regression and other key classifiers, and achieved 99% accuracy, demonstrating high precision and recall. Cross-validation and hyperparameter optimization were adopted to further ensure the model’s generalizability and reliability. This research enhances the fault detection capabilities of NEVs, thereby improving their reliability and supporting the wider adoption of clean energy transportation solutions.

Producción Científica

Iqra Akhtar mail , Mahnoor Nabeel mail , Umair Shahid mail , Kashif Munir mail , Ali Raza mail , Irene Delgado Noya mail irene.delgado@uneatlantico.es, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Imran Ashraf mail ,

Akhtar