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Adaptive neighborhood rough set 
model for hybrid data processing: 
a case study on Parkinson’s disease 
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Extracting knowledge from hybrid data, comprising both categorical and numerical data, poses 
significant challenges due to the inherent difficulty in preserving information and practical meanings 
during the conversion process. To address this challenge, hybrid data processing methods, combining 
complementary rough sets, have emerged as a promising approach for handling uncertainty. 
However, selecting an appropriate model and effectively utilizing it in data mining requires a thorough 
qualitative and quantitative comparison of existing hybrid data processing models. This research aims 
to contribute to the analysis of hybrid data processing models based on neighborhood rough sets by 
investigating the inherent relationships among these models. We propose a generic neighborhood 
rough set-based hybrid model specifically designed for processing hybrid data, thereby enhancing the 
efficacy of the data mining process without resorting to discretization and avoiding information loss 
or practical meaning degradation in datasets. The proposed scheme dynamically adapts the threshold 
value for the neighborhood approximation space according to the characteristics of the given 
datasets, ensuring optimal performance without sacrificing accuracy. To evaluate the effectiveness 
of the proposed scheme, we develop a testbed tailored for Parkinson’s patients, a domain where 
hybrid data processing is particularly relevant. The experimental results demonstrate that the 
proposed scheme consistently outperforms existing schemes in adaptively handling both numerical 
and categorical data, achieving an impressive accuracy of 95% on the Parkinson’s dataset. Overall, 
this research contributes to advancing hybrid data processing techniques by providing a robust and 
adaptive solution that addresses the challenges associated with handling hybrid data, particularly in 
the context of Parkinson’s disease analysis.

The advancement of technology has facilitated the accumulation of vast amounts of data from various sources 
such as databases, web repositories, and files, necessitating robust tools for analysis and decision-making1,2. Data 
mining, employing techniques such as support vector machine (SVM), decision trees, neural networks, clustering, 
fuzzy logic, and genetic algorithms, plays a pivotal role in extracting information and uncovering hidden 
patterns within the  data3,4. However, the complexity of the data landscape, characterized by high dimensionality, 
heterogeneity, and non-traditional structures, renders the data mining process inherently  challenging5,6. To tackle 
these challenges effectively, a combination of complementary and cooperative intelligent techniques, including 
SVM, fuzzy logic, probabilistic reasoning, genetic algorithms, and neural networks, has been  advocated7,8.

Hybrid intelligent systems, amalgamating various intelligent techniques, have emerged as a promising 
approach to enhance the efficacy of data mining. Adaptive neuro-fuzzy inference systems (ANFIS) have laid the 
groundwork for intelligent systems in data mining techniques, providing a foundation for exploring complex 
data  relationships7,8. Moreover, the theory of rough sets has found practical application in tasks such as attribute 
selection, data reduction, decision rule generation, and pattern extraction, contributing to the development 
of intelligent systems for knowledge  discovery7,8. Extracting meaningful knowledge from hybrid data, which 
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encompasses both categorical and numerical data, presents a significant challenge. Two predominant strategies 
have emerged to address this  challenge9,10. The first strategy involves employing numerical data processing 
techniques such as Principal Component Analysis (PCA)11,12, Neural  Networks13–16, and  SVM17. However, this 
approach necessitates converting categorical data into numerical equivalents, leading to a loss of contextual 
 meaning18,19. The second strategy leverages rough set theory alongside methods tailored for categorical 
data. Nonetheless, applying rough set theory to numerical data requires a discretization process, resulting in 
information  loss20,21. Numerous hybrid data processing methods have been proposed, combining rough sets 
and fuzzy sets to handle  uncertainty22–41. However, selecting an appropriate rough set model for a given dataset 
necessitates exploring the inherent relationships among existing models, presenting a challenge for users. The 
selection and utilization of an appropriate model in data mining thus demand qualitative and quantitative 
comparisons of existing hybrid data processing models.

This research endeavors to present a comprehensive analysis of hybrid data processing models, with a specific 
focus on those rooted in neighborhood rough sets (NRS). By investigating the inherent interconnections among 
these models, this study aims to elucidate their complex dynamics. To address the challenges posed by hybrid 
data, a novel hybrid model founded on NRS is introduced. This model enhances the efficiency of the data mining 
process without discretization mitigating information loss and ambiguity in data interpretation. Notably, the 
adaptability of the proposed model, particularly in adjusting the threshold value governing the neighborhood 
approximation space, ensures optimal performance aligned with dataset characteristics while maintaining 
high accuracy. A dedicated testbed tailored for Parkinson’s patients is developed to evaluate the real-world 
effectiveness of the proposed approach. Furthermore, a rigorous evaluation of the proposed model is conducted, 
encompassing both accuracy and overall effectiveness. Encouragingly, the results demonstrate that the proposed 
scheme surpasses alternative approaches, adeptly managing both numerical and categorical data through an 
adaptive framework.

The major contributions, listed below, collectively emphasize the innovative hybrid data processing model, the 
adaptive nature of its thresholding mechanism, and the empirical validation using a Parkinson’s patient testbed, 
underscoring the relevance and significance of the study’s findings. 

1. Novel Hybrid Data Processing Model: This research introduces a novel hybrid data processing model 
based on NRS, preserving the practical meaning of both numerical and categorical data types. Unlike 
conventional methods, it minimizes information loss while optimizing interpretability. The proposed distance 
function combines Euclidean and Levenshtein distances with weighted calculations and dynamic selection 
mechanisms to enhance accuracy and realism in neighborhood approximation spaces.

2. Adaptive Thresholding Mechanism: Another key contribution is the integration of an adaptive thresholding 
mechanism within the hybrid model. This feature dynamically adjusts the threshold value based on dataset 
characteristics, ensuring optimal performance and yielding more accurate and contextually relevant results.

3. Empirical Validation through Parkinson’s Testbed: This research provides a dedicated testbed for 
analyzing behavioral data from Parkinson’s patients, allowing rigorous evaluation of the proposed hybrid 
data processing model. Utilizing real-world datasets enhances the model’s practical applicability and advances 
knowledge in medical data analysis and diagnosis.

The subsequent structure of the paper unfolds as follows: section “Related work” delves into the related work. The 
proposed model is introduced in section “Adaptive neighborhood rough set model”, Section “Instrumentation” 
underscores the instrumentation aspect, section “Result and discussion” unfolds the presentation of results and 
ensuing discussions, while section “Conclusion and future work” provides the concluding remarks for the paper. 
A list of notations used in this study is provided in Table 1.

Related work
Rough set-based approaches have been utilized in various applications like bankruptcy  prediction42, attribute/
feature subset  selection43,44, cancer  prediction45,46, etc. In addition, recently, several innovative hybrid models 
have emerged, blending the realms of fuzzy logic and non-randomized systems (NRSs). One such development is 
presented by Yin et al.47, who introduce a parameterized hybrid fuzzy similarity relation. They apply this relation 
to the task of granulating multilabel data, subsequently extending it to the domain of multilabel learning. To 
construct a noise-tolerant multilabel fuzzy NRS model (NT-MLFNRS), they leverage the inclusion relationship 
between fuzzy neighborhood granules and fuzzy decisions. Building upon NT-MLFNRS, Yin et al. also devise 
a noise-resistant heuristic multilabel feature selection (NRFSFN) algorithm. To further enhance the efficiency 
of feature selection and address the complexities associated with handling large-scale multilabel datasets, they 
culminate their efforts by introducing an efficient extended version of NRFSFN known as ENFSFN.

Sang et al.48 explore incremental feature selection methodologies, introducing a novel conditional entropy 
metric tailored for dynamic ordered data robustness. Their approach introduces the concept of a fuzzy dominance 
neighborhood rough set (FDNRS) and defines a conditional entropy metric with robustness, leveraging the 
FDNRS model. This metric serves as an evaluation criterion for features, and it is integrated into a heuristic 
feature selection algorithm. The resulting incremental feature selection algorithm is built upon this innovative 
model

Wang et al.19 introduced the Fuzzy Rough Iterative Computational (FRIC) model, addressing challenges in 
hybrid information systems (HIS). Their framework includes a specialized distance function for object sets, 
enhancing object differentiation precision within HIS. Utilizing this function, they establish fuzzy symmetric 
relations among objects to formulate fuzzy rough approximations. Additionally, they introduce evaluation 
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functions like fuzzy positive regions, dependency functions, and attribute importance functions to assess 
classification capabilities of attribute sets. They developed an attribute reduction algorithm tailored for hybrid 
data based on FRIC principles. This work contributes significantly to HIS analysis, providing a robust framework 
for data classification and feature selection in complex hybrid information systems.

Xu et al.49 introduced a novel Fitting Fuzzy Rough Set (FRS) model enriched with relative dependency com-
plement mutual information. This model addresses challenges related to data distribution and precision enhance-
ment of fuzzy information granules. They utilized relative distance to mitigate the influence of data distribution 
on fuzzy similarity relationships and introduced a fitting fuzzy neighborhood radius optimized for enhancing 
the precision of fuzzy information granules. Within this model, the authors conducted a comprehensive analysis 
of information uncertainty, introducing definitions of relative complement information entropy and formulat-
ing a multiview uncertainty measure based on relative dependency complement mutual information. This work 
significantly advances our understanding of managing information uncertainty within FRS models, making a 
valuable contribution to computational modeling and data analysis.

Jiang et al.50 presented an innovative approach for multiattribute decision-making (MADM) rooted in PRO-
METHEE II methodologies. Building upon the NRS model, they introduce two additional variants of covering-
based variable precision fuzzy rough sets (CVPFRSs) by applying fuzzy logical operators, specifically type-I 
CVPFRSs and type-II CVPFRSs. In the context of MADM, their method entails the selection of medicines using 
an algorithm that leverages the identified features.

Qu et al.51 introduced the concept of Adaptive Neighborhood Rough Sets (ANRSs), aiming for effective 
integration of feature separation and linkage with classification. They utilize the mRMR-based Feature Selection 
Algorithm (FSRMI), demonstrating outstanding performance across various selected datasets. However, it’s 
worth noting that FSRMI may not consistently outperform other algorithms on all datasets.

Xu et al.52 introduced the Fuzzy Neighborhood Joint Entropy Model (FNSIJE) for feature selection, leverag-
ing fuzzy neighborhood self-information measures and joint entropy to capture combined feature information. 
FNSIJE comprehensively analyzes the neighborhood decision system, considering noise, uncertainty, and ambi-
guity. To improve classification performance, the authors devised a new forward search method. Experimental 
results demonstrated the effectiveness of FNSIJE-KS, efficiently selecting fewer features for both low-dimensional 
UCI datasets and high-dimensional gene datasets while maintaining optimal classification performance. This 
approach advances feature selection techniques in machine learning and data analysis.

In53, the authors introduced a novel multi-label feature selection method utilizing fuzzy NRS to optimize 
classification performance in multi-label fuzzy neighborhood decision systems. By combining the NRS and 
FRS models a Multi-Label Fuzzy NRS model is introduced. They devised a fuzzy neighborhood approximation 
accuracy metric and crafted a hybrid metric integrating fuzzy neighborhood approximate accuracy with fuzzy 
neighborhood conditional entropy for attribute importance evaluation. Rigorous evaluation of their methods 
across ten diverse multi-label datasets showcased significant progress in multi-label feature selection techniques, 
promising enhanced classification performance in complex multi-label scenarios.

Sanget et al.54 introduced the Fuzzy Dominance Neighborhood Rough Set (NRS) model for Interval-Valued 
Ordered Decision Systems (IvODS), along with a robust conditional entropy measure to assess monotonic 
consistency within IvODS. They also presented two incremental feature selection algorithms. Experimental 
results on nine publicly available datasets showcased the robustness of their proposed metric and the effectiveness 

Table 1.  Notations used in this study.

Notation Detailed

SVM Support Vector Machine

ANFIS Adaptive Neuro-Fuzzy Inference Systems

PCA Principal Component Analysis

NRS Neighborhood Rough Sets

NRSs Non-Randomized Systems

NT-MLFNRS Noise-Tolerant Multilabel Fuzzy NRS

NRFSFN Noise-Resistant Heuristic Multilabel Feature Selection

HIS Hybrid Information Systems

FRS Fitting Fuzzy Rough Set

MADM Multiattribute Decision-Making

CVPFRSs Covering-based Variable Precision Fuzzy Rough Sets

ANRSs Adaptive Neighborhood Rough Sets

FSRMI mRMR-based Feature Selection Algorithm

FNSIJE Fuzzy Neighborhood Joint Entropy Model based on the Fuzzy Neighborhood Self-Information Measure

IvODS Interval-Valued Ordered Decision System

kNN K Nearest Neighbor

FFT Fast Fourier Transform

UPDRS Unified Parkinson’s Disease Rating Scale

CART Classification and Regression Tree
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and efficiency of the incremental algorithms, particularly in dynamic IvODS updates. This research significantly 
advances the application of fuzzy dominance NRS models in IvODS scenarios, providing valuable insights for 
data analysis and decision-making processes.

Zheng et al.55 generalized the FRSs using axiomatic and constructive approaches. A pair of dual generalized 
fuzzy approximation operators is defined using arbitrary fuzzy relation in the constructive approach. Different 
classes of FRSs are characterized using different sets of axioms. The postulates governing fuzzy approximation 
operators ensure the presence of specific categories of fuzzy relations yielding identical operators. Using a gen-
eralized FRS model, Hu et al.18 introduced an efficient algorithm for hybrid attribute reduction based on fuzzy 
relations constructing a forward greedy algorithm for hybrid attribute reduction resulting in optimal classification 
performance with lesser selected features and higher accuracy. Considering the similarity between two objects, 
Wang et al.36 redefine fuzzy upper and lower approximations. The existing concepts of knowledge reduction are 
extending fuzzy environment resulting in a heuristic algorithm to learn fuzzy rules.

Gogoi et al.56 use rough set theory for generating decision rules from inconsistent data. The proposed scheme 
uses indiscernibility relation to find inconsistencies in the data generating minimized and non-redundant rules 
using lower and upper approximations. The proposed scheme is based on the LEM2  algorithm57 which performs 
the local covering option for generating minimum and non-redundant sets of classification rules and does not 
consider the global covering. The scheme is evaluated on a variety of data sets from the UCI Machine Learning 
Repository. All these data sets are either categorical or numerical having variable feature spaces. The proposed 
scheme performs consistently better for categorical data sets, as it is designed to handle inconsistencies in the 
data having at least one inconsistency. Results show that the proposed scheme generates minimized rule without 
reducing the feature space unlike other schemes, which compromise the feature space.

In58, the authors introduced a novel NRS model to address attribute reduction in noisy systems with het-
erogeneous attributes. This model extends traditional NRS by incorporating tolerance neighborhood relation 
and probabilistic theory, resulting in more comprehensive information granules. It evaluates the significance of 
heterogeneous attributes by considering neighborhood dependency and aims to maximize classification consist-
ency within selected feature spaces. The feature space reduction algorithm employs an incremental approach, 
adding features while preserving maximal dependency in each round and halting when a new feature no longer 
increases dependency. This approach selects fewer features than other methods while achieving significantly 
improved classification performance, demonstrating its effectiveness in attribute reduction for noisy systems.

Zhu et al.59 propose a fault tolerance scheme combining kernel method, NRS, and statistical features to 
adaptively select sensitive features. They employ a Gaussian kernel function with NRS to map fault data to a 
high-dimensional space. Their feature selection algorithm utilizes the hyper-sphere radius in high-dimensional 
feature space as the neighborhood value, selecting features based on significance measure regardless of the 
classification algorithm. A wrapper deploys a classification algorithm to evaluate selected features, choosing a 
subset for optimal classification. Experimental results demonstrate precise determination of the neighborhood 
value by mapping data into a high-dimensional space using the kernel function and hyper-sphere radius. This 
methodology proficiently selects sensitive fault features, diagnoses fault types, and identifies fault degrees in 
rolling bearing datasets.

A neighborhood covering a rough set model for the fuzziness of decision systems is proposed that solves 
the problem of hybrid decision systems having both fuzzy and numerical  attributes60. The fuzzy neighborhood 
relation measures the indiscernibility relation and approximates the universe space using information gran-
ules, which deal with fuzzy attributes directly. The experimental results evaluate the influence of neighborhood 
operator size on the accuracy and attribute reduction of fuzzy neighborhood rough sets. The attribute reduction 
increases with the increase in the threshold size. A feature will not distinguish any samples and cannot reduce 
attributes if the neighborhood operator exceeds a certain value.

Hou et al.61 applied NRS reduction techniques to cancer molecular classification, focusing on gene expres-
sion profiles. Their method introduced a novel perspective by using gene occurrence probability in selected gene 
subsets to indicate tumor classification efficacy. Unlike traditional methods, it integrated both Filters and Wrap-
pers, enhancing classification performance while being computationally efficient. Additionally, they developed 
an ensemble classifier to improve accuracy and stability without overfitting. Experimental results showed the 
method achieved high prediction accuracy, identified potential cancer biomarkers, and demonstrated stability 
in performance.

Table 2 gives a comparison of existing rough set-based schemes for quantitative and qualitative analysis. The 
comparative parameters include handling hybrid data, generalized NRS, attribute reduction, classification, and 
accuracy rate. Most of the existing schemes do not handle hybrid data sets without discretization resulting in 
information loss and a lack of practical meanings. Another parameter to evaluate the effectiveness of the existing 
scheme is the ability to adapt the threshold value according to the given data sets. Most of the schemes do not 
adapt threshold values for neighborhood approximation space resulting in variable accuracy rates for different 
datasets. The end-user has to adjust the value of the threshold for different datasets without understanding its 
impact in terms of overfitting. Selecting a large threshold value will result in more global rules resulting in poor 
accuracy. There needs to be a mechanism to adaptively choose the value of the threshold considering both the 
global and local information without compromising on the accuracy rate. The schemes are also evaluated for 
their ability to attribute reduction using NRS. This can greatly improve processing time and accuracy by not 
considering insignificant attributes. The comparative analysis shows that most of the NRS-based existing schemes 
perform better than many other well-known schemes in terms of accuracy. Most of these schemes have a higher 
accuracy rate than CART, C4.5, and kNN. This makes the NRS-based schemes a choice for attribute reduction 
and classification.
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Adaptive neighborhood rough set model
The detailed analysis of existing techniques highlights the need for a generalized NRS-based classification tech-
nique to handle both categorical and numerical data. The proposed NRS-based techniques not only handle the 
hybrid information granules but also dynamically select the threshold δ producing optimal results with a high 
accuracy rate. The proposed scheme considers a hybrid tuple HIS = �Uh, Qh, V , f � , where Uh is nonempty 
set of hybrid records {xh1, xh2, xh3, . . . , xhn} , Qh =

{

qh1, qh2, qh3, . . . qhn
}

 is the non-empty set of hybrid 
features. Vqh is the domain of attribute qh and V = ∪qh∈Qh

Vqh , and f = Uh x Qh → V  is a total function such 
f
(

xh, qh
)

∈ Vqh for each qh ∈ Qh, xh ∈ Uh , called information function. 〈Uh, Qh, V , f 〉 is also known as a deci-
sion table if Qh = Ch ∪ D , where Ch is the set of hybrid condition attributes and D is the decision attribute.

A neighborhood relation N is calculated using this set of hybrid samples Uh creating the neighborhood 
approximation space 〈Uh, N〉 which contains information granules 

{

δ(xhi)
∣

∣xhi ∈ Uh

}

 based on some distance 
function � . For an arbitrary sample xhi ∈ Uh and B ⊆ Ch , the neighborhood δB(xhi) of xhi in the subspace B is 
defined as δB(xhi) = {xhj

∣

∣xhj ∈ Uh, �B(xi , xj) ≤ δ} . The scheme proposes a new hybrid distance function to 
handle both the categorical and numerical features in an approximation space.

The proposed distance function uses Euclidean distance for numerical features and Levenshtein distance for 
categorical features. The distance function also takes care of the significant features calculating weighted dis-
tance for both the categorical and numerical features. The proposed algorithm dynamically selects the distance 
function at the run time. The use of Levenshtein distance for categorical features provides precise distance for 
optimal neighborhood approximation space providing better results. Existing techniques add 1 to distance if two 
strings do not match in calculating the distance for categorical data and add 0 otherwise. This may not result in 
a realistic neighborhood approximation space.
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Table 2.  Comparison of existing schemes.

 References

Comparison parameters

Handle hybrid data Generalized neighborhood rough set Attribute reduction Classification Accuracy
19 YES NO YES YES Comparable
47 YES NO YES YES Comparable
48 YES NO YES YES Comparable
36 YES NO YES YES Comparable
49 YES NO YES YES Comparable
50 YES YES YES YES Comparable
51 NO YES YES YES High
54 YES YES YES YES Comparable
52 YES YES YES YES Comparable
53 YES YES YES YES Comparable
62 NO NO YES YES Comparable
56 YES NO YES YES High
58 YES NO NO YES Comparable
59 NO NO YES YES Better than C4.5
60 YES NO NO YES Comparable
61 NO NO YES YES High
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The neighborhood size depends on the threshold δ . The neighborhood will contain more samples if δ is 
greater and results in more rules not considering the local information data. The accuracy rate of the NRS greatly 
depends on the selection of threshold values. The proposed scheme dynamically calculates the threshold value 
for any given dataset considering both local and global information. The threshold calculation formula is given 
below where minD is the minimum distance between the set of training samples and the test sample contain-
ing local information and RD is the range of distance between the set of training samples and the test sample 
containing the global information.

The proposed scheme then calculates the lower and upper approximations given a neighborhood space 〈Uh,N〉 
for X ⊆ Uh , the lower and upper approximations of X are defined as:

Given a hybrid neighborhood decision table HNDT = �Uh, Ch ∪ D,V , f � , {Xh1,Xh2, . . . , XhN } are the sample 
hybrid subjects with decision 1 to N, δB(xhi) is the information granules generated by attributes B ⊆ Ch , then 
the lower and upper approximation is defined as:

and the boundary region of D is defined as:

The lower and upper approximation spaces are the set of rules, which are used to classify a test sample. A test 
sample forms its neighborhood using a lower approximation having all the rules with a distance less than a 
dynamically calculated threshold value. The majority voting is used in the neighborhood of a test sample to 
decide the class of a test sample. K-fold cross-validation is used to measure the accuracy of the proposed scheme 
where the value k is 10. The algorithm 1 of the proposed scheme has a time complexity of O(nm2) where n is the 
number of clients and m is the size of the categorial data.

(2)δ(xhi) = minD + r. (RD)

(3)NX =
{

xhi
∣

∣δ(xhi) ⊆ X, xhi ∈ Uh

}

(4)NX =
{

xhi
∣

∣δ(xhi) ∩ X �= 0, xhi ∈ Uh

}

(5)NBX =

N
⋃

i=1

NBXhi

(6)NBX =

N
⋃

i=1

NBXhi

(7)BN(D) = NBD − NBD
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Instrumentation
The proposed generalized rough set model has been rigorously assessed through the development of a test-
bed designed for the classification of Parkinson’s patients. It has also been subjected to testing using various 
standard datasets sourced from the University of California at Irvine machine learning data  repository63. This 
research underscores the increasing significance of biomedical engineering in healthcare, particularly in light 
of the growing prevalence of Parkinson’s disease, which ranks as the second most common neurodegenerative 
condition, impacting over 1% of the population aged 65 and  above64. The disease manifests through distinct 
motor symptoms like resting tremors, bradykinesia (slowness of movement), rigidity, and poor balance, with 
medication-related side effects such as wearing off and  dyskinesias65.
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In this study, to address the need for a reliable quantitative method for assessing motor complications in 
Parkinson’s patients, the data collection process involves utilizing a home-monitoring system equipped with 
wireless wearable sensors. These sensors were specifically deployed to closely monitor Parkinson’s patients with 
severe tremors in real time. It’s important to note that all patients involved in the study were clinically diagnosed 
with Parkinson’s disease. Additionally, before data collection, proper consent was obtained from each participant, 
and the study protocol was approved by the ethical committee of our university. The data collected from these 
sensors is then analyzed, yielding reliable quantitative information that can significantly aid clinical decision-
making within both routine patient care and clinical trials of innovative treatments.

Figure 1 illustrates a real-time Testbed designed for monitoring Parkinson’s patients. This system utilizes a 
tri-axial accelerometer to capture three signals, one for each axis (x, y, and z) , resulting in a total of 18 channels 
of data. The sensors employed in this setup employ ZigBee (IEEE 802.15.4 infrastructure) protocol to transmit 
data to a computer at a sampling rate of 62.5 Hz. To ensure synchronization of the transmitted signals, a transition 
protocol is applied. These data packets are received through the Serial Forwarder using the TinyOS platform 
(http:// www. tinyos. net). The recorded acceleration data is represented as digital signals and can be visualized 
on an oscilloscope. The frequency domain data is obtained by applying the Fast Fourier Transform (FFT) to 
the signal, resulting in an ARFF file format that is then employed for classification purposes. The experimental 
flowchart is shown in Fig. 2.

The real-time testbed includes various components to capture data using the Unified Parkinson’s Disease 
Rating Scale (UPDRS). TelosB MTM-CM5000-MSP and MTM-CM3000-MSP sensors are used to send and 
receive radio signals from the sensor to the PC. These sensors are based on an open-source TelosB/Tmote Sky 
platform, designed and developed by the University of California, Berkeley.

TelosB sensor uses the IEEE 802.15.4 wireless structure and the embedded sensors can measure temperature, 
relative humidity, and light. In CM3000, the USB connector is replaced with an ERNI connector that is compat-
ible with interface modules. Also, the Hirose 51-pin connector makes this more versatile as it can be attachable 
to any sensor board family, and the coverage area is increased using SMA design by a 5dBi external  antenna66. 
These components can be used for a variety of applications such as low-power Wireless Sensor Networks (WSN) 
platforms, network monitoring, and environment monitoring systems.

MTS-EX1000 sensor board is used for the amplification of the voltage/current value from the accelerometer. 
The EX1000 is an attachable board that supports the CMXXXX series of wireless sensors network Motes (Hirose 
51-pin connector). The basic functionality of EX1000 is to connect the external sensors with CMXX00 com-
munication modules to enhance the mote’s I/O capability and support different kinds of sensors based on the 
sensor type and its output signal. ADXL-345 Tri-accelerometer sensor is used to calculate body motion along 
x, y, and z-axis relative to gravity. It is a small, thin, low-power, 3-axis accelerometer that calculates high resolu-
tion (13-bit) measurements at up to ±16g. Its digital output, in 16-bit twos complement format, is accessible 
through either an SPI (3- or 4-wire) or I2C digital interface. A customized main circuit board is used having a 

Figure 1.  Testbed for Parkinson’s patients.

Figure 2.  Experimental flowchart.

http://www.tinyos.net
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programmed IC, registers, and transistors. Its basic functionality is to convert the digital data, accessed through 
the ADXL-345 sensor, into analog form and send it to MTS1000.

Result and discussion
The proposed generalized and ANRS is evaluated against different data sets taken from the machine learning 
data repository, at the University of California at Irvine. In addition to these common data sets, a real-time 
Testbed for Parkinson’s patients is also used to evaluate the proposed scheme. The hybrid data of 500 people was 
collected using the Testbed for Parkinson’s patients including 10 Parkinson’s patients, 20 people have abnormal 
and uncontrolled hand movements, and the rest of the samples were taken approximating the hand movements 
of Parkinson’s patients. The objective of this evaluation is to compare the accuracy rate of the proposed scheme 
with CART, kNN, and SVM having both simple and complex datasets containing numerical and hybrid features 
respectively. The results also demonstrate the selection of radius r for dynamically calculating the threshold value.

Table 3 provides the details of the datasets used for the evaluation of the proposed scheme including the train-
ing and test ratio used for evaluation in addition to data type, total number of instances, total feature, a feature 
considered for evaluation, and number of classes. The hybrid datasets are also selected to evaluate to performance 
of the proposed scheme against the hybrid feature space without discretization preventing information loss.

The accuracy of the NRS is greatly dependent on the threshold value. Most of the existing techniques do not 
dynamically adapt the threshold δ value for different hybrid datasets. This results in the variant of NRS suitable 
for specific datasets with different threshold values. A specific threshold value may produce better results for 
one dataset and poor results for others requiring a more generic threshold value catering to different datasets 
with optimal results. The proposed scheme introduces an adaptable threshold calculation mechanism to achieve 
optimal results regardless of the datasets under evaluation. The radius value plays a pivotal role in forming a 
neighborhood, as the threshold values consider both the local and global information of the NRS to calculate 
neighborhood approximation space. Table 4 shows the accuracy rate having different values of the radius of the 
NRS. The proposed threshold mechanism provides better results for all datasets if the value of the radius is 0.002. 
Results also show that assigning no weight to the radius produces poor results, as it will then only consider the 
local information for the approximation space. Selecting other weights for radius may produce better results for 
one dataset but not for all datasets.

Table 5 presents the comparative analysis of the proposed scheme with kNN, Naive Bayes, and C45. The results 
show that the proposed scheme performs well against other well-known techniques for both the categorical 
and numerical features space. Naive Bayes and C45 also result in information loss, as these techniques cannot 
process the hybrid data. So the proposed scheme handles the hybrid data without compromising on the informa-
tion completeness producing acceptable results. K-fold cross-validation is used to measure the accuracy of the 
proposed scheme. Each dataset is divided into 10 subsets to use one of the K subsets as the test set and the other 
K-1 subsets as training sets. Then the average accuracy of all K trials is computed with the advantage of having 
results regardless of the dataset division.

Conclusion and future work
This work evaluates the existing NRS-based scheme for handling hybrid data sets i.e. numerical and categorical 
features. The comparative analysis of existing NRS-based schemes shows that there is a need for a generic NRS-
based approach to adapt the threshold selection forming neighborhood approximation space. A generalized and 
ANRS-based scheme is proposed to handle both the categorical and numerical features avoiding information 
loss and lack of practical meanings. The proposed scheme uses a Euclidean and Levenshtein distance to calculate 
the upper and lower approximation of NRS for numerical and categorical features respectively. Euclidean and 
Levenshtein distances have been modified to handle the impact of outliers in calculating the approximation 
spaces. The proposed scheme defines an adaptive threshold mechanism for calculating neighborhood 

Table 3.  Summary of datasets used for evaluation.

Name Type Instances Train:test ratios No. of features Classes

Bupa67 Real 345 200:145 6 2

Sonar68 Real 208 100:108 60 2

Mammographic  Mass69 Real 961 516:445 6 2

Haberman’s  Survival70 Real 306 200:106 3 2

Credit-g71 Real 1000 640:360 20 2

Oil  Spill72 Real 937 600:337 48 2

Lymmography73 Hybrid 148 70:30 18 2

Splice74 Real 3190 2233:957 61 2

Optdigits75 Real 5620 3823:1797 64 2

Pendigits76 Real 9868 6908:2960 16 2

Pageblocks77 Real 5473 3831:1642 10 2

Statlog78 Real 6435 4505:1930 36 2

Magic0479 Real 19020 13314:5706 10 2

Parkinson’s Hybrid 500 350:150 10 2



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7635  | https://doi.org/10.1038/s41598-024-57547-4

www.nature.com/scientificreports/

approximation space regardless of the data set under consideration. A Testbed is developed for real-time 
behavioral analysis of Parkinson’s patients evaluating the effectiveness of the proposed scheme. The evaluation 
results show that the proposed scheme provides better accuracy than kNN, C4.5, and Naive Bayes for both 
the categorical and numerical feature space achieving 95% accuracy on the Parkinson’s dataset. The proposed 
scheme will be evaluated against the hybrid data set having more than two classes in future work. Additionally, 
in future work, we aim to explore the following areas; (i) conduct longitudinal studies to track the progression 
of Parkinson’s disease over time, allowing for a deeper understanding of how behavioral patterns evolve and 
how interventions may impact disease trajectory, (ii) explore the integration of additional data sources, such 
as genetic data, imaging studies, and environmental factors, to provide a more comprehensive understanding 
of Parkinson’s disease etiology and progression, (iii) validate our findings in larger and more diverse patient 
populations and investigate the feasibility of implementing our proposed approach in clinical settings to support 
healthcare providers in decision-making processes, (iv) investigate novel biomarkers or physiological signals 
that may provide additional insights into Parkinson’s disease progression and motor complications, potentially 
leading to the development of new diagnostic and monitoring tools, and (v) conduct patient-centered outcomes 
research to better understand the impact of Parkinson’s disease on patients’ quality of life, functional abilities, 
and overall well-being, with a focus on developing personalized treatment approaches.

Data availability
The datasets used in this study are publicly available at the following links:
Bupa67: https:// doi. org/ 10. 24432/ C54G67,  Sonar68: https:// doi. org/ 10. 24432/ C5T01Q, Mammographic  Mass69: 
https:// doi. org/ 10. 24432/ C53K6Z, Haberman’s  Survival70: https:// doi. org/ 10. 24432/ C5XK51, Credit-g71: https:// 
doi. org/ 10. 24432/ C5NC77,  Lymmography73: https:// doi. org/ 10. 24432/ C54598,  Splice74: https:// doi. org/ 10. 24432/ 
C5M888,  Optdigits75: https:// doi. org/ 10. 24432/ C50P49,  Pendigits76: https:// doi. org/ 10. 1137/1. 97816 11972 825.9, 
 Pageblocks77: https:// doi. org/ 10. 24432/ C5J590,  Statlog78: https:// doi. org/ 10. 24432/ C55887,  Magic0479: https:// 
doi. org/ 10. 1609/ aaai. v29i1. 9277.
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