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ABSTRACT Generative intelligence relies heavily on the integration of vision and language. Much of the
research has focused on image captioning, which involves describing images with meaningful sentences.
Typically, when generating sentences that describe the visual content, a language model and a vision
encoder are commonly employed. Because of the incorporation of object areas, properties, multi-modal
connections, attentive techniques, and early fusion approaches like bidirectional encoder representations
from transformers (BERT), these components have experienced substantial advancements over the years.
This research offers a reference to the body of literature, identifies emerging trends in an area that
blends computer vision as well as natural language processing in order to maximize their complementary
effects, and identifies the most significant technological improvements in architectures employed for image
captioning. It also discusses various problem variants and open challenges. This comparison allows for an
objective assessment of different techniques, architectures, and training strategies by identifying the most
significant technical innovations, and offers valuable insights into the current landscape of image captioning
research.

INDEX TERMS Image captioning; deep learning; image processing; artificial intelligence

I. INTRODUCTION

IMAGE captioning involves generating a coherent and
meaningful sentence using a language model as well as vi-

sual understanding to describe the visual content of an image
[1]. This task has gained significant attention recently, and
the connection between natural language generation as well
as human vision perception has been recently understood
through neuroscience research [2]. The domain of artificial
intelligence is constantly evolving and one of the recent areas
of focus involves the development of architectures that can
process images and generate language [3]–[5]. The primary

objective of this study is to identify the most efficient chan-
nel for processing given images, representing their content,
and translating them to a series of word sequences, while
maintaining language fluency and establishing connections
between visual and textual elements.

Initially, image captioning involved techniques such as
description retrieval and hand-crafted natural language gen-
eration [6], which has been covered in previous surveys.
However, with the advancements in deep learning-based gen-
erative models, image captioning has become more sophisti-
cated [7]–[9].
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It involves an image-to-sequence problem, where pixels
serve as inputs. In the first step, the visual encoding stage,
the inputs are transformed into one or numerous vectorized
features through the process of encoding [10], [11]. The
language model, in the second generating stage, uses these
feature vectors to generate a string of words or sub-words
from a specified vocabulary [12]. The research community
has significantly improved model design in recent years.
Early proposals relied on recurrent neural networks (RNN)
and global image descriptors, but more recent methods in-
clude attentive approaches and reinforcement learning [13]–
[15]. The latest breakthroughs include the use of transform-
ers, self-attention, and single-stream bidirectional encoder
representations from transformers (BERT)-like approaches.

Meanwhile, the computer vision and natural language pro-
cessing (NLP) communities have been developing evaluation
protocols and metrics to compare model results to human-
generated ground truths. Despite the advancements in the
field of image captioning, the task is still considered unsolved
due to the lack of a single approach or solution that can
accurately generate captions for images like a human. Hence,
there is ongoing research to improve the quality and accuracy
of the generated captions.

Different proposals and task variants have been explored
to cater to various user needs and description styles in spe-
cific domains. As stated by [16] and [17], image captions
can be classified into three categories: perceptual, which
emphasizes visual features and non-visual attributes, which
reports inferred and contextualized facts; and conceptual,
which describes the real visual scene of the given content,
including the relationships between visual entities.

Conceptual descriptions are typically considered the pri-
mary goal of image labeling and encompass multiple lev-
els of aspects and details, such as including or excluding
attributes or describing only targeted portions versus en-
hanced details. We intent to give a complete outline of the

approaches, models, and task variations that have been de-
veloped in recent years to inspire novel ideas. This approach
involves reviewing datasets and evaluation metrics, as well as
quantitatively comparing the primary approaches. Lastly, we
address the open challenges and future directions in this area.

A. RESEARCH CONTRIBUTIONS AND OBJECTIVES
This research offers a comprehensive roadmap for re-
searchers delving into the vibrant domain of image caption-
ing. It delivers a succinct summary of state-of-the-art tech-
niques, diverse datasets, and robust evaluation metrics, en-
abling a swift recap and empowering researchers to navigate
the evolving landscape of this field with informed progress.
It contributes to the classifications for visual encoding and
language modeling techniques, taking into account the two-
fold nature of captioning models, and discusses their signifi-
cant features and constraints. We examine the training meth-
ods utilized in existing research, which incorporate recent
progressions achieved by pre-training and masked language
model losses. Additionally, we analyze the main datasets
used for image captioning, including domain-generic bench-
marks and domain-specific datasets.

Further, we analyze the metrics commonly employed to
evaluate performance, including both traditional and uncon-
ventional measures, and discuss the aspects of image captions
that they emphasize. For this, we will perform a quantitative
analysis of the primary image captioning techniques, taking
into account standard as well as non-standard metrics, and
analyze their relationships, performance, dissimilarities, and
features. Finally, we will discuss various task variants and
open challenges, as well as future directions for research.

This study presents a more extensive and current per-
spective of the model for caption generation using deep
learning techniques in contrast to previous surveys such as
[30]–[33] and [34]. We conduct a more thorough analysis of
proposed approaches, examine a larger volume of literature,

FIGURE 1: An introduction to the image-captioning task and categorization of the widely used methodologies
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TABLE 1: A comparison of recent studies in image captioning with their contribution.

Ref. Year Contributions
[18] 2014 Introduced a deep neural network-based approach for generating captions for images using a combination of convolutional

and recurrent networks.
[19] 2015 Introduced a neural network-based approach for generating captions for images using a combination of convolutional and

recurrent networks.
[20] 2015 Introduced a visual attention mechanism in neural networks for image captioning to improve the quality of generated captions.
[21] 2016 Proposed a model that used convolutional neural networks to extract image features and a recurrent neural network to generate

captions.
[22] 2018 Proposed a personalized image captioning model that utilized context sequence memory networks to incorporate user-specific

information.
[23] 2018 Presented a bottom-up and top-down focused attention technique for captioning images that made use of both local and global

picture features.
[24] 2019 Proposed a model that incorporated grounded and co-referenced people into the image captioning process to improve the

quality of generated captions.
[25] 2019 Demonstrated the effectiveness of transfer learning for image captioning using a text-to-text transformer model.
[26] 2019 Proposed a model that utilized spatially and systematically attention in CNN for image-captioning.
[27] 2020 Proposed a transformer-based model for image captioning that utilized a meshed-memory architecture to handle long-term

dependencies.
[28] 2021 Proposed a framework for training data-efficient image captioning models using contrastive learning and distillation

techniques.
[29] 2023 A comprehensive survey summarizing and categorizing attention-based models for image captioning with the categorization

of four sub-classes

and encompass unconventional evaluation criteria that are
usually overlooked in other literature studies. Moreover, we
consider emerging task variants and a wider range of avail-
able datasets. Figure 1 shows three broad categories of image
captioning approaches discussed in this study.

A thorough comparison of numerous works in the area
of picture captioning is offered in Table 1 of this research
article. The table’s columns for study name, contribution,
and year enable quick summaries of significant research out-
puts. Researchers can immediately see and comprehend the
improvements made in picture captioning over time thanks
to the table’s orderly organization of the studies and their
individual contributions. It offers a detailed overview of
the various methods, developments, and approaches used by
various researchers as well as the development of the area.

We followed the recognized criteria for performing sys-
tematic literature reviews, including the preferred reporting
items for systematic reviews and meta-analysis (PRISMA)
guidelines, to ensure the comprehensiveness and rigor of our
survey research. This section describes the methods we used
to find relevant publications, the criteria for article selection,
and the repositories we utilized to collect data.

B. LITERATURE SEARCH AND DATA COLLECTION
We searched a number of academic databases and reposito-
ries, including IEEE Xplore, ACM Digital Library, Google
Scholar, Web of Science, and Scopus to find the literature
relevant to image captioning. In order to uncover the most
recent research findings in the area of image captioning, this
search included articles published up to the year 2023.

C. INCLUSION AND EXCLUSION CRITERIA
For choosing the publications to be included in this study, we
used stringent inclusion and exclusion criteria. If an article
fits the following requirements, it is considered suitable for
this survey

• Relevance: The article’s main emphasis is on computer
vision and natural language processing algorithms,
models, or related research for image captioning.

• Publication Date: Articles released within the decided
time range to guarantee the relevancy of the literature
survey.

• Peer-Reviewed: In order to preserve the standards and
dependability of the sources, only peer-reviewed publi-
cations are included.

• Language: English-language articles are taken into con-
sideration for inclusion. The articles that do not fulfill
these requirements are not included in this survey.

D. SELECTION PROCESS
The selection procedure requires several steps, including an
initial screening of titles and abstracts to discover possibly
relevant papers, followed by a careful examination of the
complete texts of chosen articles to assess their suitability
for inclusion. To reduce bias, this process is conducted
separately by two or more reviewers. In order to find more
pertinent publications that might not have been found during
our original search, we also performed a citation analysis.
This iterative process made sure that the survey contained
thorough and representative research.

The paper unfolds in the following sections: Section
II conducts a thorough examination of visual encoding
schemes, with a specific focus on global CNN and the
attention mechanism. Moving to Section III, it delineates
the learning models employed for image captioning, partic-
ularly delving into LSTM-based language models. Section
IV delves into the nuanced discussion of training strategies
for these models. Transitioning to Section V, the spotlight is
on evaluation protocols, elucidating the methodologies used.
Section VI broadens the scope, presenting various Variants
of Captioning. Concurrently, Section VII sheds light on the
challenges and unresolved issues encountered in the field.
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The paper culminates in Section VIII, encapsulating the
Conclusion and paving the way for future directions.

II. VISUAL ENCODING
Visual encoding in image captioning refers to the process of
transforming an input image into a compact and meaningful
representation that can be easily understood by a machine
learning model. It involves extracting high-level visual fea-
tures from the image, which capture important information
such as objects, shapes, colors, and textures [35]. The vi-
sual encoding step plays a crucial role in bridging the gap
between images and natural language descriptions. Encoding
the visual content of an image into a numerical representation
enables the subsequent captioning model to generate accurate
and relevant textual descriptions.

There are various techniques used for visual encoding,
such as convolutional neural networks (CNN) and pre-trained
models such as VGGNet, ResNet, or InceptionNet. These
models are trained on large-scale image classification tasks
and have learned to extract rich visual features from images.
During visual encoding, the input image is passed through
the CNN or pre-trained model, and several convolutional
and pooling layers are applied to extract hierarchical visual
features at different scales. The output of these layers is
typically a high-dimensional map of attributes that represents
the visual content of the given image.

To obtain a more compact representation, techniques such
as spatial pooling or global average pooling are often applied
to aggregate the spatial information across the feature map.
This reduces the dimensionality of the features while pre-
serving their semantic meaning. The resulting visual features
are then fed into the subsequent captioning model, which can
be a recurrent neural network (RNN) or a transformer-based
architecture. The captioning model uses visual features along
with a language model to generate a coherent and descriptive
caption for the given image.

A. GLOBAL CNN FEATURES
In image captioning, global CNN features play a crucial role
in capturing the overall content and context of an image.
These features provide a compact representation of the entire
image, enabling the captioning model to understand and
describe the visual content effectively [36]. In this section,
we will delve into the concept of global CNN features, their
extraction process, and their significance in image caption-
ing.

1) Introduction to Global CNN Features
Global CNN features are extracted from CNN and aim to cap-
ture high-level visual information that encompasses the entire
image. Unlike local CNN features that focus on specific
regions or objects within an image, global features consider
the image as a whole and provide a holistic representation
[37]. These features are derived from the output of deep con-
volutional layers in CNN architectures, where the layers learn
to recognize complex patterns and semantic information.

2) Extraction of Global CNN Features
The process of extracting global CNN features involves
passing the input image through a pre-trained CNN model,
such as VGGNet, ResNet, or InceptionNet. These models
are typically trained on large-scale image classification tasks,
which enables them to learn rich and discriminative visual
representations [38].

During the forward pass, the image undergoes a series
of convolutional and pooling layers, resulting in a high-
dimensional feature map. To obtain global features, spa-
tial pooling techniques are applied, such as global average
pooling or spatial pyramid pooling [39]. These techniques
aggregate the spatial information across the feature map,
reducing the dimensionality while retaining the essential
visual content. The resulting global CNN features represent
the overall visual characteristics of the image.

3) Significance of Global CNN Features in Image Captioning
Global CNN features provide a condensed representation of
the image, capturing its salient visual attributes. They offer
several advantages in the context of image captioning

i) Contextual Understanding: By considering the entire
image, global features enable the captioning model to
grasp the overall context and scene description. This
helps in generating captions that accurately describe
the visual content and provide a comprehensive under-
standing of the image [40].

ii) Semantic Information: The deep convolutional lay-
ers of CNN models are trained to recognize high-
level semantic concepts, such as objects, shapes, and
textures. Global CNN features encode this semantic
information, allowing the captioning model to generate
more descriptive and meaningful captions [41].

iii) Robustness to Variations: Global features are more
robust to variations in object positions, scales, and
occlusions within the image. They capture the most
discriminative visual cues that are essential for caption
generation, regardless of the specific spatial configura-
tions of objects [42].

iv) Efficiency: Global features are computationally effi-
cient compared to their local counterparts. Since they
consider the entire image, the extraction process re-
quires fewer computations and can be performed in
a single forward pass through the pre-trained CNN
model.

4) Integration with Captioning Models
Once the global CNN features are extracted, they serve as
input to the captioning model. These features are typically
combined with natural language processing components,
such as RNNs or transformer-based architectures, to generate
image captions [43]. The global features provide a visual
context that helps the captioning model align the generated
text with the visual content of the image, leading to more
accurate and contextually relevant captions.
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B. PAY CLOSE ATTENTION TO CNN FEATURE GRID
Many recent approaches have aimed to improve the granu-
larity level of visual encoding [44]–[46], motivated by the
constraints of global representations. Dai et al. [47] used
2D activation maps instead of 1D global feature vectors to
directly include spatial structure into the language model.
A significant percentage of the captioning community has
embraced the additive attention method, which was inspired
by machine translation literature (Figure 2b). This technique
implements time-varying visual feature encoding, which pro-
vides greater flexibility and finer granularity.

A weighted averaging approach is used to characterize
additive attention. In the initial formulation by Bahdanau
et al. [48], attention weights are computed using a single-
layer feed-forward neural network with hyperbolic tan-
gent non-linearity. Given two vector sets {X1, ..., Xn} and
{h1, ..., hm}, the additive attention score betweenXi andXj

is determined as:

fatt(hi, xj) = WT
3 tanhW1, xi +W2xj (1)

W1 and W2 are weight matrices, and W3 is a weight vec-
tor that aids in linear combination. Then, using a softmax
function, a probability distribution p (xj |hi) is generated,
indicating the relevance of the element represented by xi for
hhi.

The attention mechanism, which was originally designed
for sequence alignment, has been extended to connect visual
representations with the hidden states of a language model.
Xu et al. [45] proposed a strategy for exploiting additive
attention over a convolutional layer’s spatial output grid.
This allows for selective focus on specific grid elements
during word production. This approach has been used in
other papers, with slight improvements in visual encoding
[46], [49]–[52], and [53].

To enhance the encoder-decoder system, review networks
have been established. Yang et al. [26] used a recurrent re-
view network to perform many review steps with an emphasis
on encoder hidden states and output a "thought vector" after
each step. This vector is then used by the decoder’s attention
mechanism.

Chen et al. [54] advocated combining channel-wise at-
tention with classical spatial attention over convolutional
activations. They experimented with exploiting multi-level
characteristics by using multiple convolutional layers. Sim-
ilarly, Jiang et al. [55] proposed leveraging complementary
information with several CNNs by merging their representa-
tions with a recurrent method.

Some methods incorporated human attention by combin-
ing saliency information, directing caption production, and
stimulus-based attention. Sugano and Bulling [56] pioneered
this concept by using human eye fixations to caption images.
As an input to the soft-attention module, they provided
normalized fixation histograms over the image, weighing
attended visual regions based on fixation. Saliency maps

were used as an additional attention source in subsequent
investigations [57]–[59], and [23].

C. PAY CLOSE ATTENTION TO THE CNN FEATURE GRID
In the field of image captioning, attention mechanisms have
proven to be highly effective in improving the quality and
relevance of generated captions [60]. In this section, we
will explore the concept of attention over a grid of CNN
features, a technique that enhances the captioning process
by selectively focusing on relevant visual regions within an
image. This section will provide an overview of attention
mechanisms, explain the grid-based approach, and discuss
their significance in image captioning.

1) Introduction to Attention Mechanisms
Attention mechanisms in image captioning mimic the human
visual attention process by dynamically allocating impor-
tance to different regions of an image. Rather than relying
solely on a fixed global context, attention mechanisms allow
the captioning model to attend to specific visual features
that are most relevant to generating accurate and descriptive
captions [61].

2) Grid-based Attention
The grid-based features refer to a method of applying at-
tention mechanisms to a grid-like structure obtained from
the output of the CNN model. This approach divides the
feature map into a regular grid of spatial locations, each
representing a specific visual region. To compute attention
over the grid, a set of learnable attention weights is associated
with each grid location [49]. These weights determine the
importance or relevance of that region for generating the
next word in the captioning process. By assigning different
attention weights to different grid locations, the model can
dynamically emphasize or de-emphasize specific visual re-
gions based on their relevance. During the caption generation
process, the attention mechanism attends to different grid
locations at each step, allowing the model to focus on the
most informative regions. This enables the captioning model
to generate captions that are closely aligned with the salient
visual content of the image.

3) Importance of Paying Attention to CNN Features Grid in
Image Captioning
Attention to the CNN features offer several advantages in
image captioning that are as follows

i) Fine-grained Localization: By attending to specific
grid locations, the model can selectively focus on fine-
grained visual details, such as objects, regions, or
image-specific attributes. This fine-grained localization
helps in generating more accurate and contextually
relevant captions [20].

ii) Relevance to Visual Content: The attention mecha-
nism enables the model to adaptively attend to relevant
visual regions while generating each word in the cap-
tion. This ensures that the generated text is aligned with
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FIGURE 2: Widely used three significant visual representation techniques used for captioning of images include: (a) utilizing
global CNN features, (b) employing fine-grained attributes captured from a convolutional layer, an attention mechanism
supported by the language model., and (c) using an attention mechanism and image features collected by the detector.

the most important visual cues, resulting in captions
that accurately describe the image content [47].

iii) Handling Complex Scenes: Images often contain
multiple objects or complex scenes. Attention over a
grid of CNN features allows the model to attend to
multiple regions simultaneously, providing the ability
to capture the relationships and interactions between
different objects or regions within the image [52].

iv) Interpretability: The attention weights associated
with each grid location provide insights into which
regions of the image the model attends to while gen-
erating captions. This interpretability can be useful for
understanding and analyzing the model’s behavior and
its reasoning process during caption generation [56].

4) Integration with Captioning Models

Attention over a grid of CNN features is typically in-
corporated into captioning models that utilize RNNs or
transformer-based architectures. The attention weights ob-
tained from the grid locations are combined with the caption-
ing model’s hidden states to generate contextually relevant
and visually grounded captions.

D. ATTENTION OVER VISUAL REGIONS

Attention over visual regions refers to a mechanism used
in image captioning that dynamically assigns weights or
importance to different regions of an image based on their
relevance to the generation of captions. This attention mech-
anism allows the captioning model to focus its attention
on specific visual regions that are most informative and
contribute significantly to the understanding and description
of the image [55]. Unlike global or grid-based attention,
attention over visual regions operates on a more localized
level. Instead of dividing the image into a predefined grid
or considering the image as a whole, attention is applied to
individual regions or regions of interest (ROIs) within the
image.

The process of attention to visual regions involves two
main steps. First, a region proposal mechanism is used to
identify and extract meaningful ROIs from the image. This
can be achieved through techniques such as object detection
or region-based convolutional neural networks (R-CNN).

Once the ROIs are obtained, the attention mechanism as-
signs attention weights to each region based on its relevance
to the caption generation process. These attention weights
reflect the importance of each region in contributing to the
overall understanding and description of the image [23], [62],
[63]. During caption generation, the captioning model selec-
tively attends to different visual regions according to their
attention weights. As a result, the model may concentrate
on the most salient and informative regions while generating
each word or phrase in the caption. By attending to relevant
visual regions, the model can generate captions that are
closely aligned with the specific content and context of the
image [57]–[59]. Attention to visual regions offers several
benefits in image captioning.
Relevance: By assigning attention weights to specific visual
regions, the model can generate captions that are highly rele-
vant to the content and context of the image. This ensures that
the generated text accurately describes the relevant objects,
scenes, or attributes within the image.

i) Fine-grained Localization: Attention over visual re-
gions allows the model to focus on fine-grained details
within the image, such as specific objects or regions of
interest. This enables the model to generate captions
that capture the intricate visual characteristics of the
image [64].

ii) Contextual Understanding: By attending to different
visual regions, the model can capture the relationships
and interactions between various objects or regions
within the image [65]. This enhances the model’s con-
textual understanding and enables it to generate cap-
tions that reflect the spatial and semantic relationships
present in the image.

iii) Adaptability: The attention mechanism allows the
model to dynamically adapt its focus to different visual
regions based on their importance [66]. This adapt-
ability ensures that the model can handle images with
varying complexities and generate captions that are
suitable for different types of visual content.

E. GRAPH-BASED ENCODING
In recent years, graph-based encoding has emerged as a pow-
erful technique in the field of image captioning [67], [68].
This approach leverages the inherent structural relationships
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FIGURE 3: Latest advancements in visual encoding for image captioning: (a) graph-based encoding, and (b) self-attention-
based encoding.

and dependencies present in visual scenes to capture rich
contextual information. In this section, we will explore the
concept of graph-based encoding, its methodology, and its
significance in improving the quality of image captions.

Graph-based encoding in image captioning involves repre-
senting an image as a graph, where the nodes represent visual
entities such as objects or regions, and the edges capture
the relationships or interactions between these entities. By
modeling the image as a graph, this approach allows for the
explicit incorporation of spatial and semantic dependencies.

1) Methodology of Graph-based Encoding
The process of graph-based encoding typically involves sev-
eral steps

i) Object Detection: The first step is to perform object
detection or region proposal techniques to identify
salient visual entities within the image. This can be
achieved using pre-trained object detection models or
R-CNN.

ii) Node Representation: Each detected object or region
is represented as a node in the graph. The node rep-
resentation usually consists of learned visual features
extracted from the corresponding visual entity using
CNN. These features encode the visual appearance,
shape, and other relevant attributes of the objects or
regions.

iii) Edge Generation: The next step is to establish edges
between the nodes based on the relationships between
visual entities. These relationships can be determined
using heuristics, pre-defined rules, or learned from
data. For example, spatial relationships such as ad-
jacency or containment can be used to define edges
between objects or regions.

iv) Edge Representation: Edges in the graph are associ-
ated with learned edge features that capture the contex-
tual relationships between the connected nodes. These
features can be learned from training data or derived
from pre-trained models, such as graph convolutional
networks (GCNs), which can capture the semantic
dependencies be-tween visual entities.

v) Graph Construction: The nodes and edges are com-
bined to form the complete graph representation of the
image. This graph serves as a structured representation

of the visual scene, encoding both the visual entities
and their relationships.

2) Significance of Graph-based Encoding in Image
Captioning
Graph-based encoding offers several advantages in image
captioning

i) Contextual Understanding: By explicitly modeling
the relationships between visual entities, graph-based
encoding provides a more comprehensive understand-
ing of the visual scene [69]. This enables the captioning
model to generate captions that capture the contex-
tual dependencies and interactions among objects or
regions [22].

ii) Improved Coherence: The structured nature of the
graph representation allows the captioning model to
generate captions that are more coherent and globally
consistent [70]. The model can leverage the graph
structure to ensure that the generated captions follow
logical relationships and describe the scene in a more
structured and coherent manner.

iii) Enhanced Visual Reasoning: Graph-based encoding
enables visual reasoning by explicitly encoding the
semantic relationships between objects or regions [71].
This facilitates the model’s ability to reason about com-
plex visual scenes, handle ambiguous situations, and
generate captions that are grounded in the underlying
structure of the scene.

iv) Adaptability to Complex Scenes: Graph-based en-
coding can effectively handle complex scenes with
multiple objects, occlusions, or intricate spatial ar-
rangements. The graph structure allows the model to
capture the interactions between objects, leading to
more accurate and detailed captions that reflect the
complexities of the visual scene.

3) Integration with Captioning Models
Once the graph representation is constructed, it is combined
with captioning models such as RNN or transformer-based
architectures. The graph structure is utilized as an additional
input, providing the captioning model with rich contextual
information.
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F. SELF-ATTENTION ENCODING
Self-attention encoding, also known as self-attention mech-
anism or intra-attention, is a key component in many state-
of-the-art natural language processing (NLP) models, in-
cluding those used in image captioning [72]. It enables the
model to focus on different parts of the input sequence and
capture the relationships between its own elements. In this
section, we explore the concept of self-attention encoding, its
mathematical formulation, and its significance in enhancing
the understanding and generation of image captions. Self-
attention encoding is a mechanism that allows a model to
compute attention weights for each element in a sequence by
considering the relationships between all the elements within
that sequence. It is a powerful technique for capturing depen-
dencies and identifying important contextual information, as
it enables the model to dynamically attend to different parts
of the input sequence based on their relevance.

1) Mathematical Formulation
The self-attention mechanism can be mathematically ex-
pressed as follows. Given an input sequence X =
(x1, x2, ..., xn), where xi represents the i-th element of the
sequence, we aim to compute attention weights for each
element that indicates its importance or relevance to other
elements in the sequence.

To perform self-attention, three types of vectors are de-
rived from the input sequence, key vectors (Kv), a query
vector (Qv), as well as value vectors (V v). These vectors
are linear projections of the input elements and are typically
obtained by applying learned weight matrices.

Kv = XWk, Qv = XWp, V v = XWv (2)

where Wk, Wp, and Wv are learnable weight matrices.
To measure the relevance between each query vector (Q)

and key vector (K), attention scores are calculated. The atten-
tion score between the i-th query and j-th key is computed by
taking the dot product of their respective vectors

Attention(Qi,Kj) = Qi.Kj (3)

The attention scores undergo a normalization process us-
ing the softmax function to obtain attention weights

Self−Attended(Xi) =
∑

Attention−Weight(Qi,Kj).Vj
(4)

2) Significance of Self-Attention Encoding in Image
Captioning

i) Contextual Understanding: Self-attention allows the
model to capture long-range dependencies and rela-
tionships between different elements in the input se-
quence. This enables the model to have a better con-
textual understanding of the image features or textual
context, resulting in more accurate and meaningful
image captions.

ii) Flexible Attention: Unlike fixed attention mecha-
nisms, self-attention allows the model to attend to
different parts of the input sequence based on their
relevance. It enables the model to dynamically adapt its
focus, emphasizing important features or contextually
relevant elements for generating captions.

iii) Capture Interactions: Self-attention captures the in-
teractions between different elements within the se-
quence. In image captioning, it helps the model to
capture the relationships between visual features or
textual tokens, allowing for the generation of captions
that are grounded in the semantic and visual coherence
of the input.

iv) Parallel Processing: Self-attention can be computed in
parallel, making it highly efficient for capturing depen-
dencies across long sequences. This makes it suitable
for processing the spatial or temporal aspects of image
data, where long-range dependencies are crucial for
understanding the context.

FIGURE 4: Vision T-Encoding. The picture is divided into fixed-size patches, linearly embedded, appended to position
embeddings, and sent to a typical Transformer encoder.
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G. DISCUSSION
The discussion on the most appropriate feature model for
image captioning is evolving due to various factors. The
advancements in grid features, self-attentive visual encoders,
large-scale multimodal models, improved object detection,
and end-to-end visual models have introduced new possi-
bilities and challenges. The inclusion of textual information
into visual representations has shown great potential and
deserves further investigation. Future studies should focus on
exploring and comparing these various approaches to identify
the most effective feature model for image captioning tasks.

III. LEARNING MODELS FOR IMAGE CAPTIONING
Language models play a crucial role in the field of image
captioning. Image captioning involves generating textual de-
scriptions or captions that accurately convey the content and
context of an image. With the advancements in deep learning
and the availability of vast amounts of visual data, language
models have emerged as powerful tools for enhancing the
accuracy and quality of image captions

P (y1, y2, ..., yn|X) = ΠP (yi|y1, y2, ..., yi−1, X) (5)

Equation 5 represents the probability of generating a
sequence y1, y2, ..., yn given an input X . This equation
is commonly used in the context of sequence generation
tasks, such as language modeling or image captioning.
P (y1, y2, ..., yn|X) denotes the conditional probability of
generating the entire sequence y1, y2, ..., yn given the input
X . It represents the joint probability of generating each ele-
ment in the sequence, taking into account the dependencies
between them and the input X . Π symbol represents the
product operator, indicating that we multiply the probabilities
of generating each element in the sequence together. In other
words, we calculate the likelihood of generating the entire
sequence by multiplying the probabilities of generating each
individual element in a sequential manner.

The expression P (yi|y1, y2, ..., yi−1, X) represents the
conditional probability of generating the i-th element yi in
the sequence, given the previous elements y1, y2, ..., yi−1 and
the input X . It captures the dependency of each element
on the preceding elements and the input, which is often
modeled using techniques like RNNs or transformer models.
The equation expresses the joint probability of generating
a sequence by multiplying the conditional probabilities of
generating each element in a sequential manner, considering
the dependencies between elements and the input X . It is a
fundamental formulation used in various sequence genera-
tion tasks within the realm of ma-chine learning and natural
language processing.

Language models are computational models that learn and
predict sequences of words or sentences based on statisti-
cal patterns in a given corpus of text. These metrics are
specifically designed to capture the semantic and syntactic
structures inherent in human language. By leveraging these
metrics, machine learning models can generate captions that

are not only coherent but also contextually relevant to the
corresponding images. In the context of image captioning,
language models are typically used to generate captions by
encoding the visual information of an image and decoding it
into a natural language representation. The language model
takes the visual features extracted from the image as input
and generates a sequence of words that form a descriptive
caption.

There are various types of language models employed in
image captioning, each with its own strengths and limita-
tions. Some common language models used in this domain
include the following.

A. RECURRENT NEURAL NETWORKS
RNNs are widely utilized for sequence modeling tasks due
to their ability to capture temporal dependencies. In image
captioning, RNNs play a crucial role as they process input
sequences in a sequential manner, incorporating feed-back
connections to retain a hidden state that preserves context
from previous inputs. Among the different RNN variants,
long short-term memory (LSTM) and gated recurrent unit
(GRU) are widely adopted and popular choices in image
captioning tasks.

1) LSTM with Single Layer
Given the sequential structure of language, RNNs naturally
excel at generating sentences. Among the various RNN vari-
ants, LSTM models have emerged as the predominant choice
for language modeling [73].

The architecture for captioning based on LSTM is built
upon a single-layer LSTM, which was originally introduced
by Vinyals et al. [19]. In this architecture, presented in Figure
5a, where the initial hidden state of the LSTM is initialized
with the visual encoding. The LSTM produces the resultant
caption by predicting a word at each time step. To make the
prediction, the hidden state is projected onto a vector of the
vocabulary size, and a SoftMax activation function is applied
to obtain the probabilities of the words

i) Additive Attention Mechanism: The additive atten-
tion mechanism was subsequently introduced by Xu et
al. [45]. As illustrated in Figure 5b, a context vector
is computed by using the prior hidden state to direct
the attention mechanism across the visual characteris-
tics (X). The multilayer perceptron that forecasts the
output word is then fed this context vector.

ii) Exploring Alternative Methods: In addition to the
aforementioned single-layer LSTM architecture, sev-
eral subsequent works have adopted similar decoder
structures without significant architectural changes
[26], [54], [74].

iii) Visual Sentinel: Lu et al. [46] introduced the concept
of a visual sentinel, an additional learnable vector that
augments the spatial image features. The decoder at-
tends to the visual sentinel instead of the visual features
when producing "non-visual" tokens such as "the,"
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FIGURE 5: LSTM-based language modeling techniques include the following: (a) Single-Layer LSTM model conditional on
the visual feature; (b) LSTM with attention, as suggested in the Show, Attend, and Tell model; (c) LSTM with attention; and
(d) describe LSTM with two layers

"of," and "on" (Figure 5c). Based on the prior con-
cealed state and the created word, the visual sentinel
is calculated at each time step.

iv) Hidden State Reconstruction: Chen et al. [50] pro-
posed a technique called hidden state reconstruction.
This entails reconstructing the past hidden state from
the present one using a second LSTM. This strategy
seeks to regularize the language model’s transition
dynamics. The information from the two phrases of the
bidirectional LSTM is combined with grid visual ele-
ments by the attention mechanism of the cross model
to create the final caption.

v) Multi-stage Generation: Wang et al. [51] introduced
the idea of multi-stage generation, where captions are
generated in two different parts, generation of sentence
skeleton and its attributes and are executed using one-
layer LSTMs. Following a similar approach, Gu et al.
[53] developed a framework coarse-to-fine multi-stage
that utilizes a decoder series of LSTM. By leveraging
the output of each preceding decoder, subsequent de-
coders in the architecture are able to refine the captions
generated, resulting in a progressive improvement in
the quality and accuracy of the captions.

vi) Semantic-guided LSTM: Jia et al. [75] suggest ex-
tension to LSTM called semantic guided LSTM. This
model incorporates semantic extracted information
from the image to guide the generation process. More
precisely, the LSTM block incorporates semantic infor-
mation as an extra input to each gate within the block.

2) Two-layer LSTM: Expanding Capabilities
To enhance their ability to capture higher-order relations,
LSTM models can be extended to multi-layer structures.
Donahue et al. [76] initiated a two-layer LSTM that was
started to serve as a language model for captioning. Two lay-
ers are stacked in this design, and the first layer’s concealed
states are used as input for the second layer.

i) Two-layers and Additive Attention: Taking the con-
cept further, Anderson et al. [77] advised specializing
the two layers to carry out language modeling and

visual attention. In Figure 5d, the top-down visual
attention model is implemented in the first LSTM layer.
The information from the previously created word,
the prior concealed state, and the mean-pooled picture
characteristics are all taken into account in this method.
The second LSTM layer uses the produced attended
image feature vector along with the first layer’s hidden
state to create a probability distribution across the
vocabulary.

ii) Alternates of Two-layer LSTM: Due to their expres-
sive power, two-layer LSTMs with internal attention
mechanisms became widely employed as language
models before the emergence of Transformer-based
architectures [78]–[81].

iii) Neural Baby Talk: Lu et al. [82] introduced the neural
baby talk approach, which incorporates a pointing net-
work to associate words with specific image regions.
The network makes predictions about certain spots or
slots within the caption and inserts the appropriate pic-
ture area classes there. A visual sentinel is employed as
a stand-in for non-visual words to handle for grounding
reasons. The object detector is used in this method
as a feature region extractor as well as a visual word
prompter for the language model.

iv) Reflective Attention: Ke et al. [83] introduced mod-
ules for reflection into their methodology. While the
second module enhances the syntactic structure of the
sentence by directing the generation process based
on positional information of common words, the first
module computes the relevance between hidden states
of all previously predicted words and the present word.

v) Look Back and Predict Forward, Mitigating Ac-
cumulated Errors: In a similar vein, Qin et al. [84]
employed two parts of their approach. The predict
ahead module concurrently predicts the following two
words. By using this strategy, it is feasible to reduce the
overall mistakes that may possibly occur throughout
the inference process.

vi) Time for Adaptive Attention, Dynamic Attention
Steps Huang et al. [85] devised an adaptive-attention
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time mechanism that enables the decoder to take any
desired number of attention steps while creating each
word. By adapting the attention process in accordance
with the demands of the caption creation task, this
method offers flexibility.

3) Boosting LSTM with Self-Attention: Enhancing Language
Models

Several studies have explored the integration of self-attention
mechanisms into LSTM-based language models [27], [86]–
[88], replacing the traditional additive attention mechanism.
These approaches aim to improve the performance and capa-
bilities of the models in generating captions.

Huang et al. [27] presented the operator for attention-on-
attention, which augments LSTM with an additional step of
attention. This operator performs attention on top of visual
self-attention, allowing the model to focus on relevant visual
features while generating captions.

Pan et al. [86] proposed an x-linear attention block, which
incorporates interactions of second order to promote self-
attention, has been proposed. This improvement makes the
entire process of creating picture captions better, resulting in
captions that are more accurate and contextually aware.

Presenting an alternative strategy, Zhu et al. [88] utilizes
a decoder enriched with self-attention [86] to enhance the
language generation process. This approach aims to auto-
matically discover the most effective configurations for the
model’s architecture, resulting in improved caption quality.
The inclusion of self-attention mechanisms in these studies
showcases their ability to enhance the performance of LSTM-
based language models in the context of image captioning.
The integration of self-attention allows the models to capture
more fine-grained relationships and dependencies within the
visual and textual domains, leading to more accurate and
contextually coherent captions.

B. TRANSFORMER MODELS
Transformer models have garnered considerable interest in
the field of natural language processing. These models uti-
lize self-attention mechanisms to effectively capture long-
range dependencies within a given sequence. The trans-
former’s encoder-decoder architecture, combined with atten-
tion mechanisms, has proven effective in generating high-
quality captions.

1) Transformer-based Architectures: Revolutionizing
Language Generation
This introduction of a new paradigm proposed by Vaswani
et al. [89] marked a significant shift in language generation
approaches. The transformer model, based on this paradigm,
has become the cornerstone of various groundbreaking NLP
advancements, including BERT [90] and GPT [91]. It has
emerged as the de facto standard architecture for many lan-
guages understanding tasks and has also found application in
image captioning.

In the case of transformer-architecture, commonly used
in image captioning, the decoder plays a central role. The
mechanism employs masked self-attention, with words func-
tioning as queries and outputs from the encoder layers serv-
ing as keys and values, allowing it to attend selectively to
words within the sequence. These attention mechanisms are
followed by a feed-forward network Figure 6. While training,
masking operation restricts the generation process to a uni-
directional flow, applying attention only to previous words.
Some image captioning models have employed the original
transformer decoder [92]–[95]. However, researchers have
put forward variations to enhance the encoding of visual
features.

2) Gating Mechanisms
Li et al. [96] developed a system for gating the flow of se-
mantic and visual information and altering representations of
picture areas with semantic qualities collected from a third-
party tagger. Cornia et al. [97] extended cross-attention be-

FIGURE 6: Transformer-based language model employs masked, self-attention, and cross-attention to generate captions.
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yond the last encoding layer, considering all encoding layers.
The transformative power of transformer-based architectures
lies in their ability to capture intricate relationships between
words and leverage attention mechanisms for effective lan-
guage modeling. By incorporating gating mechanisms and
exploring different ways of leveraging attention, researchers
continue to push the boundaries of language generation and
improve the integration of visual and textual information in
image captioning tasks.

C. BERT-LIKE ARCHITECTURES: EXPANDING IMAGE
CAPTIONING MODELS
Even though the encoder and decoder techniques are fre-
quently employed for image captioning, recent studies have
explored the integration of BERT-like structures, inspired by
the BERT model [90]. These architectures fuse the visual and
textual modalities early on, offering several advantages. As a
result, the BERT paradigm has gained popularity in works
that leverage pre-training techniques [98]–[100].

In another study, Li et al. [98] proposed the usage of
tags found in images as anchor points to enhance the align-
ment between vision and language representations. The input
image-text pair is represented by their model as a triple made
up of word tokens, object tags, and region characteristics. A
more reliable unified representation of vision and language is
made possible by the fact that object tags match the textual
classes recommended by the object detector.

By incorporating BERT-like structures, these approaches
aim to leverage pre-trained models and enhance the fusion
of visual and textual information in image captioning. This
integration allows for more effective encoding and decoding
processes, leading to improved caption quality and better

alignment between the textual and the visual components.

D. NON-AUTOREGRESSIVE LANGUAGE MODELS
Non-autoregressive language models have been suggested for
machine translation to shorten inference time by producing
all words simultaneously. This paradigm has also been at-
tempted to be used for the captioning of images [101]–[104].
Initially, non-autoregressive generation approaches involved
multiple stages. Subsequent approaches made use of rein-
forcement learning techniques to enhance the final outcomes
[102], [104].

E. DISCUSSION
Recurrent models have been the norm for a sizable amount
of time, giving rise to creative and effective concepts that
may be applied to non-recurrent solutions. Recurrent models
fail to sustain long-term dependencies and have a sluggish
learning curve. As a consequence of their capacity to over-
come these constraints, autoregressive and transformer-based
systems have become more popular. Massive pre-training
for picture captioning utilizing encoder-decoder or BERT-
like architectures has been developed in response to the
success of pre-training on huge unsupervised corpora for
NLP applications. This method has performed quite well,
showing that it is possible to infer and learn visual and
textual semantic relationships even from less vetted material
[95], [98], [105]. While not inherently generative, BERT-
like designs are ideally suited for such extensive pre-training.
Examining extensive pre-training on generative-oriented ar-
chitectures at the moment [95], [106] holds great promise
and yields performances at least comparable to early fusion
counterparts.

FIGURE 7: A unified stream of attentive layers in a language model that is similar to BERT simultaneously processes word
tokens and image regions to produce the output caption.
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IV. TRAINING STRATEGIES USED FOR IMAGE
CAPTIONING MODELS
An image captioning model typically generates a caption
word by word, considering both the subsequent tokens and
the provided image. During each iteration, the model sam-
ples a resultant token based on the learning patterns. In
this simplest process of greedy decoding, the token that
has the maximum possibility is chosen as output. However,
this approach accumulates prediction errors as the caption
progresses. Several common training strategies are employed
for this purpose

i) Cross-entropy loss: This strategy is based on calculat-
ing the loss using cross-entropy between the predicted
word distribution and the ground truth word.

ii) Masked language model: This strategy involves
masking some words in the input caption and training
the model to predict those masked words based on the
context.

iii) Reinforcement learning: This approach allows direct
optimization, enabling the model to learn from feed-
back signals.

iv) Pre-training objectives: These objectives involve pre-
training the model using vision-and-language tasks
which can improve captioning performance.

A. CROSS-ENTROPY LOSS
In the context of image captioning, cross-entropy is a loss
function used to train models to generate captions for images.
It measures the dissimilarity between the predicted caption
and the ground-truth caption. The cross-entropy loss in image
captioning is calculated based on the probability distribution
of predicting each word in the caption sequence. The formula
for cross-entropy loss in this context is

LXE(θ) =
∑

log(P (y|yi − 1, X)) (6)

where LXE(θ) represents the cross-entropy loss, θ denotes
the model’s parameters, P is the probability distribution
induced by the language model, yi is the ground-truth word
at time i, y{1 : i − 1} represents the previous ground-
truth words, and X corresponds to the visual encoding of the
image.

The loss is calculated by summing the negative logarithm
of the predicted probabilities for each word in the ground-
truth caption sequence. The goal is to minimize this loss
during training, encouraging the model to assign higher prob-
abilities to the correct words in the caption. By optimizing
the cross-entropy loss, the model learns to generate captions
that closely match the ground-truth captions, as it tries to
minimize the discrepancy between the predicted and actual
word distributions.

B. MASKED LANGUAGE MODEL
The fundamental idea driving the optimization function is
to randomly mask a small subset of tokens within the input
sequence and then train the model to predict these masked

tokens. This approach enables the model to utilize contextual
information to infer the missing tokens, resulting in the
construction of a robust sentence representation that heavily
relies on contextual cues. Nevertheless, it is vital to highlight
that because of its emphasis on predicting masked tokens and
neglecting non-masked ones, training using this approach is
relatively slower compared to training for complete left-to-
right or right-to-left generation. Intriguingly, certain studies
have embraced this technique as a pre-training tool, occasion-
ally excluding cross-entropy tokens [98], [100].

C. REINFORCEMENT LEARNING IN IMAGE
CAPTIONING
Researchers have turned to reinforcement learning (RL) as
a viable method for training picture captioning models to
get over the drawbacks of word-level training methodolo-
gies. The image captioning model is viewed as an agent in
this paradigm, having movable parameters that determine its
course of action. The agent applies its policy at each time
step to select an action that corresponds to foreseeing the
subsequent word in the created phrase. In order to maximize
the predicted payoff, the agent’s parameters are optimized
after completion. Many research works have looked into the
use of RL in picture captioning using other sequence-level
metrics as reward signals. The loss gradient is computed
using both beam search and greedy decoding methods as
follows

5θL(θ) = −1

k
+

k∑
i=1

((r(wi)− b)5 θlogP (wi)) (7)

where wi represents the i-th sentence in the beam or a
sampled collection, r(·) is the reward function (e.g., CIDEr
computation), and b is the baseline value.

The baseline refers to the computation of the sentence re-
ward, which can be obtained either through greedy decoding
[44] or by calculating the average reward from the beam
candidates [97]. It is worth noting that RL training from a
random policy is generally inefficient and time-consuming.
Therefore, the typical procedure involves pre-training the
model using cross-entropy or a masked language model.
Subsequently, the model undergoes a fine-tuning stage with
RL, incorporating a sequence-level metric as the reward. This
pre-training step ensures that the initial RL policy is more
favorable than a random one, leading to improved learning
efficiency.

D. PRE-TRAINING IN VISION AND LANGUAGE MODELS
AT A LARGE SCALE
Following the BERT strategy [90], tokens from both the
visual and textual modalities are randomly masked, and the
model is trained to predict the masked inputs based on
the contextual information from both modalities, thereby
establishing a joint representation. Another prevalent strategy
involves employing a contrastive loss, where inputs are orga-
nized as triples consisting of image regions, caption words,
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and object tags. The model is tasked with distinguishing be-
tween accurate triples and contaminated ones, where the tags
are substituted randomly [98], [100], [114]. In some cases,
cross-entropy is being utilized during training, particularly
when working with inaccurate captions [95], [106], [115],
[116].

The effectiveness of this technique has been shown
through its ability to facilitate bi-directional attention within
the prefix sequence, allowing its application in both decoder-
only and encoder-decoder sequence-to-sequence models.
Notably, certain large-scale models trained on inaccurate
data using the given method have achieved state-of-the-art
performance without the need for a reinforcement learning-
based fine-tuning stage [95], [117]. Additionally, image cap-
tioning can serve as a pre-training task to efficiently learn
visual representations, which in turn can provide benefits to
downstream tasks like image classification, and detection of
objects.

V. EVALUATION PROTOCOLS FOR IMAGE CAPTIONING
The development of image annotation depends, as with any
data-driven endeavor, on the availability of huge datasets
and the development of quantitative assessment criteria to
evaluate performance and track improvements in the area.

A. DATASETS
Image captioning datasets comprise images paired with one
or multiple captions. The inclusion of multiple ground-truth
captions per image is essential for capturing the variabil-
ity in human descriptions. Besides the number of available
captions, the characteristics of the captions, exert a substan-
tial influence, image captioning algorithms are profoundly
shaped and their performance is greatly affected by this
factor. It is crucial to consider the term distribution within
the datasets since caption distributions tend to be long-
tailed. Common practice involves including only terms with
frequencies above a predefined threshold when using word-
level dictionaries. However, subword-based tokenization ap-
proaches like BPE [118] have gained popularity, as they
allow dataset pre-processing to be avoided. The datasets
available vary in terms of the images they contain and the
labels linked to those images. Table 2 gives a reflection of the
most widely used public datasets.

Please note that some information, such as the vocabulary
size and the number of words per caption, may not be
available for certain datasets. Additionally, newer datasets or
updates to existing datasets might also have been released.
Therefore, it is always a good idea to consult the latest
research papers and resources for the most up-to-date infor-
mation on image captioning datasets.

1) Commonly Used Datasets for Standard Image Captioning
Tasks
Researchers in the community employ benchmark datasets to
enable comparisons between various approaches on a shared
evaluation platform. This methodology aids in guiding the
advancement of image captioning techniques by identifying
appropriate directions. Benchmark datasets must accurately
represent the task, encompassing its challenges and the de-
sired optimal outcomes, which align with performance levels
attainable by humans. Moreover, these datasets should in-
clude a large variety of images from different domains, and
each image should have multiple associated captions.

Early structures for image captioning [18], [76], [119] typ-
ically underwent training and evaluation using the Flickr30K
[108] and Flickr8K [16] datasets. These datasets encompass
images sourced from the Flickr website, portraying everyday
activities, events, and scenes, along with five captions per
image. Presently, the most extensively utilized dataset is Mi-
crosoft COCO [120], comprising images featuring complex
scenes with people, animals, and common everyday objects
within their contextual environment. It contains more than
121,000 photos, each of which has five precisely written
subtitles. The dataset is split into 40,504 validation pictures
and 82,583 training images. For evaluation purposes, most
research literature follows the splits defined by Karpathy et
al. [18], wherein 5,500 images from the original validation set
are assigned for validation, 5,500 for testing, and the remain-
der for training. The dataset comprises 40,700 images, with
each image having 45 private captions, and it is accompanied
by a public evaluation server.

2) Pre-training Datasets
Although using big, carefully curated datasets for training is
a reasonable strategy, research works [95], [98], [105], [121]
show the advantages of pre-training on increasingly bigger

TABLE 2: Overview of image captioning datasets.

Dataset Domain No. of Images No. Of Caps. (per
image)

Vocab Size No. Of Words (per
caps)

Year

Conceptual Captions [107] Generic 3.3M 5 28K 10.3 2018
MS COCO [69] Generic 123K 5 10K 6.2 2014
Flickr30k [108] Generic 31K 5 - 6.1 2014
SBU Captions [4] Generic 1K 5 - 9.1 2011
Visual Genome [64] Generic 108K - - - 2017
VizWiz Captions [109] Assistive 31K 5 - 11.9 2018
CUB-200 [110] Birds 11K 10 - - 2011
Oxford-102 [111] Flowers 8K 10 - - 2014
Fashion Captions [112] Fashion 52K 5 - - 2019
BreakingNews [113] News 1.2K 5 - - 2018
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vision and language datasets. These datasets may be gathered
for different purposes, such as visual question answering, or
they may be picture captioning datasets with lower-quality
captions [98], [99] text-to-image generation [122], or image-
caption association [123]. Prominent datasets specifically
curated for image captioning pre-training purposes com-
prise SBU Captions, initially employed for image caption-
ing in a retrieval context, encompassing roughly 1 million
image-text pairs scraped from the Flickr website. Another
dataset, YFCC100M [124], comprises 100 million media
objects, with around 14.8 million images alongside auto-
matically gathered textual descriptions. Conceptual Captions
[107], [125] datasets have been proposed, offering about 3.4
million (CC3M) and 12 million (CC12M) images coupled
with weakly-associated descriptions automatically collected
from the web. Furthermore, the Wikipedia-based Image Text
(WIT) [126] dataset offers images from Wikipedia alongside
various extracted metadata from the original pages, featuring
approximately 5.3 million images with corresponding En-
glish descriptions. These datasets are particularly intriguing
for pre-training due to their large scale and diverse caption
styles. However, it is worth noting that the captions in these
datasets may contain noise. Additionally, as many photos
are offered as URLs, their availability is not always guar-
anteed. Pre-training on these datasets requires a significant
investment in processing power and time to gather the nec-
essary data. Nevertheless, this approach proves valuable in
achieving state-of-the-art performance. Certain pre-training
datasets, such as ALIGN [95], [127], and ALT-200 [105],
1.8 billion and 200 million noisy image-text pairings, respec-
tively, are not available to the general public. Moreover, the
datasets used for training DALL-E [122] and CLIP [123],
comprising 251 million and 401 million pairs, respectively,
are also not publicly available.

3) Datasets of Specific Domains
While benchmark datasets that are generic to various do-
mains capture the fundamental aspects of image captioning,
domain-specific datasets play a critical role in illuminating
and addressing specific challenges. These challenges might
revolve around the visual domain, such as image type and
style, or the semantic domain. The distribution of terms used
to describe domain-specific images can significantly differ
from that of terms used for generic images. An instance of
a domain-specific dataset within the visual domain is the
VizWiz Captions [109] dataset, designed to advance image
captioning research in assistive technologies. This dataset
comprises images taken by visually-impaired individuals us-
ing their phones, which might result in low-quality images
capturing a wide range of everyday activities, many of which
involve reading text. Examples of datasets in specific seman-
tic domains include CUB-200 [110] and Oxford-102 [111].
The CUB-200 dataset contains images of birds, while the
Oxford-102 dataset features images of flowers. Both datasets
include ten captions per image, curated by Reed et al. [128].
Due to their specificity, these datasets are often utilized for

tasks beyond standard image captioning, like cross-domain
labeling [129]–[133].

Fashion Captioning [112] is another domain-specific
dataset that comprises images of clothing items in differ-
ent poses and colors, sometimes sharing the same caption.
The vocabulary used to describe these images is typically
smaller and more specific than that used in generic datasets.
Conversely, datasets like Breaking News [113] and Good
News [134] require enriched vocabulary as their images,
extracted articles from news, and feature long labels written
by multiple journalists. TextCaps [135], a dataset containing
images with text that must be "read" and incorporated into the
caption, and Localized Narratives [136], featuring captions
narrated by people describing what they see in the images,
are additional examples of domain-specific datasets. The col-
lection of domain-specific datasets and the development of
solutions to tackle the challenges they present are crucial for
expanding the applicability of image captioning algorithms.
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TABLE 3: An examination of the performance of representative image captioning methods concerning various evaluation metrics. The † marker denotes models trained
by us using ResNet-152 features, while the ‡ marker signifies unofficial implementations.

Model # Params
(M)

B-1 B-4 M R C S Div. 1 Div. 2 Vocab Novel WMD Alignment Coverage TIGEr BERT-S CLIP-S CLIP-SRef

Show and Tell† [19] 13.6 72.4 31.4 25.0 53.1 97.2 18.1 0.014 0.045 635 36.1 16.5 0.199 71.7 71.8 93.4 0.697 0.762
SCST (FC)‡ [44] 13.4 74.7 31.7 25.2 54.0 104.5 18.4 0.008 0.023 376 60.7 16.8 0.218 74.7 71.9 89.0 0.691 0.758
Show, Attend † [45] 18.1 74.1 33.4 26.2 54.6 104.6 19.3 0.017 0.060 771 47.0 17.6 0.209 72.1 73.2 93.6 0.710 0.773
SCST (Att2in)‡ [44] 14.5 78.0 35.3 27.1 56.7 117.4 20.5 0.010 0.031 445 64.9 18.5 0.238 76.0 73.9 88.9 0.712 0.779
Up-Down‡ [77] 52.1 79.4 36.7 27.9 57.6 122.7 21.5 0.012 0.044 577 67.6 19.1 0.248 76.7 74.6 88.8 0.723 0.787
SGAE [79] 125.7 81.0 39.0 28.4 58.9 129.1 22.2 0.014 0.054 647 71.4 20.0 0.255 76.9 74.6 94.1 0.734 0.796
MT [80] 63.2 80.8 38.9 28.8 58.7 129.6 22.3 0.011 0.048 530 70.4 20.2 0.253 77.0 74.8 88.8 0.726 0.791
AoANet [27] 87.4 80.2 38.9 29.2 58.8 129.8 22.4 0.016 0.062 740 69.3 20.0 0.254 77.3 75.1 94.3 0.737 0.797
X-LAN [86] 75.2 80.8 39.5 29.5 59.2 132.0 23.4 0.018 0.078 858 73.9 20.6 0.261 77.9 75.4 94.3 0.746 0.803
DPA [87] 111.8 80.3 40.5 29.6 59.2 133.4 23.3 0.019 0.079 937 65.9 20.5 0.261 77.3 75.0 94.3 0.738 0.802
AutoCaption [88] - 81.5 40.2 29.9 59.5 135.8 23.8 0.022 0.096 1064 75.8 20.9 0.262 77.7 75.4 94.3 0.752 0.808
ORT [92] 54.9 80.5 38.6 28.7 58.4 128.3 22.6 0.021 0.072 1002 73.8 19.8 0.255 76.9 75.1 94.1 0.736 0.796
CPTR [117] 138.5 81.7 40.0 29.1 59.4 129.4 - 0.014 0.068 667 75.6 20.2 0.261 77.0 74.8 94.3 0.745 0.802
M2 Transformer [97] 38.4 80.8 39.1 29.2 58.6 131.2 22.6 0.017 0.079 847 78.9 20.3 0.256 76.0 75.3 93.7 0.734 0.792
X-Transformer [86] 137.5 80.9 39.7 29.5 59.1 132.8 23.4 0.018 0.081 878 74.3 20.6 0.257 77.7 75.5 94.3 0.747 0.803
Unified VLP [99] 138.2 80.9 39.5 29.3 59.6 129.3 23.2 0.019 0.081 898 74.1 26.6 0.258 77.1 75.1 94.4 0.750 0.807
VinVL [100] 369.6 82.0 41.0 31.1 60.9 140.9 25.2 0.023 0.099 1125 77.9 20.5 0.265 79.6 75.7 88.5 0.766 0.820
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B. EVALUATION METRICS
Assessing the quality of generated captions poses a challenge
as it is subjective and complex. Captions must not only be
grammatically correct and fluent but also accurately describe
the input image. During the process of planning a human
evaluation campaign involving multiple users scoring the
produced sentences is widely considered one of the most
reliable methods for evaluating caption quality, it is costly
and lacks reproducibility, limiting fair comparisons between
different approaches. Automatic scoring methods have been
developed to check the quality of produced captions by
the system. Table 3 provides an overview of the evaluation
metrics. It presents the results of various image caption-
ing approaches, analyzing their performance using different
scores for evaluation as discussed previously. In addition,
we present the parameter count to offer an understanding
of the computational complexity and memory usage of the
models. The information in Table 3 is derived from the model
weights and captions files provided by the original authors
or other top-performing implementations. The evaluation is
performed on the domain-generic COCO dataset, widely
used as a benchmark in the field.

Table 3 clusters the methods based on visual encoding
information and orders them by CIDEr score. We see that the
addition of region-based visual encodings considerably en-
hanced conventional and embedding-based measures. More
enhancement came from integrating information on inter-
object relations expressed through graphs or self-attention.
CIDEr, SPICE, and Coverage metrics demonstrate the most
notable benefits of vision and language pre-training. Addi-
tionally, diversity-based scores, such as Div-1 and Div-2,
show a strong correlation with Vocab Size. The learning-
based scores show that models trained exclusively on textual
input do not successfully differentiate across picture cap-
tioning techniques. This property is desirable for image cap-
tioning evaluation, enabling performance estimation without
relying on limited and subjective reference captions.

1) Benchmark Evaluation Metrics
Initially, image captioning performance was evaluated us-
ing NLP tasks like, the BLEU score [137] and METEOR
score [138] were introduced in machine-translation evalua-
tion. BLEU calculates n-gram precision up to length four,
while METEOR prioritizes the recall of matching unigrams
found in the candidate captions and reference sentences,
considering stemming. The ROUGE score [139] has also
been used for image captioning. This score considers the
longest subsequences of tokens in the same relative order that
appear in both the candidate and reference captions, possibly
with other tokens in between. Later on, dedicated metrics for
evaluating image captioning were introduced [140], [141].
The CIDEr score [141] quantifies the cosine similarity be-
tween the term frequency-inverse document frequency (TF-
IDF) weighted n-grams found in the candidate caption and
the set of reference captions linked to the image. It considers
both precision and recall. On the other hand, the SPICE score

[141] assesses matching tuples extracted from the candidate
caption and the reference (or image) scene graphs, giving
priority to semantic content over fluency. Metrics explicitly
tailored for image captioning exhibit better alignment with
human judgment when compared to metrics borrowed from
other NLP tasks (with the exception of METEOR [138]),
both on the corpus and caption levels [138], [141]. The
correlation with human judgment is gauged through statis-
tical correlation coefficients like Pearson’s, Kendall’s, and
Spearman’s, along with agreement with humans’ preferred
captions in pairs of candidates, assessed on a selected set of
captioned images.

2) Metrics for assessing diversity
In order to evaluate performance, it is customary to consider
a set of standard metrics as mentioned above. However, these
metrics can be manipulated as they prioritize word similarity
rather than the correctness of meaning. Another limitation of
standard metrics is their inability to capture and encourage
the generation of novel and diverse captions, which aligns
better with the variability seen in human descriptions of com-
plex images. To address this concern, diversity metrics have
been developed. These metrics, such as [142]–[145], can
perhaps be determined even without ground-truth captions
during testing. It is advised to combine them with other met-
rics because they do not account for the syntactic correctness
or relevance of the captions to the image. When numerous
captions are produced for the same picture, a captioning
system’s overall effectiveness can be measured in terms of
corpus-level diversity or single-image diversity (referred to
as global diversity and local diversity, respectively, in [143]).

3) Embedding-based Metrics
A different approach to evaluate image captions entails the
use of metrics based on embedding [146]–[149] which assess
the semantic similarity or specific aspects of caption quality.
This approach considers the use of embeddings to measure
the degree of similarity or evaluate particular elements within
the generated captions. For example, the WMD score [150],
initially developed to assess semantic dissimilarity between
documents, can be modified for captioning evaluation by
comparing generated captions with ground-truth captions as
the documents being compared [151]. In a similar vein, the
Alignment score [152] analyzes whether ideas are mentioned
in a human-like order by comparing the alignment of noun
sequences in candidate and reference sentences. Moreover,
the Coverage score [153], [154] calculates the extent of a
caption by taking into account the scene’s indicated visual
elements. This score directly considers visual elements and
can be used even without ground-truth captions.

4) Evaluation Through Learning-based Methods
As a further advancement in caption quality assessment,
researchers are exploring learning-based evaluation strategies
[155]–[160]. This approach employs a component within
a complete captioning system responsible for assessing the
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completeness [161] or human-likeness [162] of the generated
captions. As an alternative, learning-based assessment uses
a model that has already been trained. Consider the BERT-
S score [163], which is frequently used to assess different
language-generating tasks [164], uses cosine similarity to
represent and contrast the tokens in the reference and can-
didate sentences using pre-trained BERT embeddings [90].
Additionally, the CLIP-S score [165] computes an adjusted
cosine similarity between the image and candidate caption
representations to evaluate image captioning directly using
the CLIP [123] model. As a result, CLIP-S can work without
reference captions, however, the CLIP-SRef variation can
also use them.

VI. VARIANTS OF IMAGE CAPTIONING
In addition to general-purpose image captioning, the liter-
ature has explored several specific sub-tasks that can be
categorized into four distinct categories based on their focus.

A. ADDRESSING SCARCITY OF TRAINING DATA
Obtaining datasets containing pairs of images and captions
can incur significant expenses. Consequently, researchers
have explored variants of image captioning that require less
supervision.

1) Novel Object Captioning
This alternative seeks to characterize objects that do not
exist in the training set, facilitating zero-shot learning to
enhance real-world practicality [166], [167]. In earlier at-
tempts [168], [169], knowledge transfer from out-domain im-
ages was explored by incorporating external unpaired visual
and textual data during model training. To facilitate further
advancements in this domain, a more demanding dataset
called nocaps [170] was introduced, which includes nearly
400 novel objects. Newer methodologies for this specific
variation [171], [172] incorporating coping mechanisms into
the language model have been part of the approach.

By conditioning the model on external, unpaired visual
and textual input during training, early methods tried to
transfer information from out-of-domain pictures. The more
difficult Nocaps dataset has been made available to aid
study in this area [170], and has been released, comprising
almost 401 unique items. Some methods for this type [171],
[172] include copying mechanisms in the language model to
choose novel things that have been anticipated by a tagger
or to create a caption template with placeholders for novel
objects. Additionally, based on the predictions of a tagger,
Anderson et al. [170] created the Constrained Beam Search
method, which guarantees the presence of chosen tag words
in the output caption. In addition, Hu et al. [173] introduced
a multi-layer transformer model that has been pre-trained
by randomly masking one or more tags from image-tag
pairings, continuing the pre-training trend with BERT-like
architectures.

2) Captioning for Unpaired Images
Unsupervised and semi-supervised approaches may both be
used for unpaired image captioning. Without using paired
image-text training data, unsupervised captioning focuses
on understanding and characterizing pictures. Early inves-
tigations and unpaired machine translation algorithms were
used as models [174] suggests generating captions in a pivot
language and then translating them to the target language.

Subsequently, after that, the emphasis turned to adversarial
learning by teaching an LSTM-based discriminator to tell the
difference between genuine captions and produced captions
[175], [176]. The creation of captions from picture scene-
graphs [177] and the use of memory-based networks [178]
are other methods. Adversarial learning is used in semi-
supervised methods like [179] that use both paired and un-
paired data, whereas iterative self-learning is used in [180].

3) Continual Captioning
Following the ideas of the constant learning paradigm, con-
tinuous captioning tries to overcome the problem of han-
dling partially unavailable material by enabling progressive
learning of new tasks without losing previously acquired
ones. This method views new assignments as collections of
captioning tasks, each requiring the use of a different vocab-
ulary [181], requiring the model to transfer visual concepts
between tasks.

B. CONSIDERING THE VISUAL INPUT
Certain subtasks focus on establishing a stronger correlation
between textual descriptions and visual data.

1) Dense Captioning
Johnson et al. [182] introduced the concept of dense caption-
ing, which entails simultaneously identifying and defining
salient regions in the image using brief sentences of natural
language. This task can be compared to an expansion of
object detection, where captions replace object tags, or image
captioning, where specific regions replace the entire image.
Approaches that take on this task make use of attribute
generators [183], [184], contextual and global features [185],
[186], and textual paragraphs to provide a coherent story
about the visual content [187]–[192].

2) Text-based Image Captioning
Text-based image captioning, also known as optical char-
acter recognition (OCR)-based image captioning or image
captioning with reading comprehension, involves reading
and incorporating text present in images into the generated
descriptions. Sidorov et al. [135] introduced this task with
the TextCaps dataset, while OCR-CC [193], a sub-part of the
CC3M dataset [107], was designed for pre-training purposes.
The typical method for this variation entails integrating im-
age regions and text tokens, leveraging their mutual spatial
information [194], [195], within the visual labeling [135],
[196], [197].
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3) Change Captioning
Change captioning is centered around capturing alterations
that transpire in a scene, necessitating precise change de-
tection and effective natural language depiction. The Spot-
the-Diff dataset [198], was introduced to tackle this task,
comprising pairs of frames from video surveillance footage,
accompanied by corresponding textual descriptions of visual
changes. To delve deeper into this variation, the CLEVR-
Change dataset was developed [199], containing nearly 80K
image pairs with five different scene change types. Proposed
approaches for change captioning apply attention mecha-
nisms to emphasize semantically relevant aspects Ignoring
distracting factors, such as alterations in viewpoint [200]–
[202]. Additionally, some approaches are discussed in [203],
where the objective is to retrieve an image based on its corre-
sponding image and the description of the changes that took
place. These variants of image captioning explore different
aspects such as dealing with limited training data, enhancing
the correlation between textual and visual information, and
capturing changes within a scene.

C. FOCUSING ON THE TEXTUAL OUTPUT
Every image captures a wide range of entities with intricate
interactions, leading to diverse human descriptions that are
grounded in different objects and details. Some image cap-
tioning variants specifically target these aspects.

Diverse image captioning seeks to mimic the level of
detail and variety in phrases created by people. The most
popular method for achieving variety is based on several
beam search algorithms [204]. This approach involves divid-
ing the beams into similar groups and encouraging diversity
between these groups. Other solutions, such as contrastive
learning [205], conditional GANs [142], [162], and para-
phrasing [206], have also been explored. Nevertheless, these
approaches frequently exhibit subpar performance regarding
caption quality, a drawback that can be partly mitigated by
employing variational autoencoders [207]–[210].

An alternative approach entails using multiple part-of-
speech tag sequences, predicted from image region classes
[211], to prompt the model into generating diverse captions
based on these sequences. While some approaches focused
on cross-lingual image captioning [212], [213], captioning
for medical images [214]–[216], paintings [217], [218], and
news [219]–[221] has also been explored. Similarly, person-
alized image captioning for social networks has also been
investigated [22], [222]–[225].

D. HANDLING REQUIREMENTS OF USERS
When captions do not state the obvious and are written in an
interesting way that piques users’ attention, users find them
to be more effective. This need is addressed by personalized
picture captioning, which creates descriptions based on the
user’s past knowledge, active vocabulary, and writing style.
Earlier techniques used a memory block to retain context
[226], [227]. Another approach proposed by Zhang et al.
[228] used the multi-modal approach. By taking into ac-

count the user’s most recent captions and a trained user
representation, a transformer network is used to customize
captions. Some research focuses on adding style to captions
as an additional controlled input, using corpora of unpaired
stylized text [229]–[233].

1) Controllable Captioning
Controllable captioning involves active user involvement,
where users select and prioritize images that should be
depicted with relevant details, which function as a guiding
signal during the caption generation process. The guiding
signal in image captioning may have sparsity, appearing as
chosen image regions (as seen in [152], [234]) or words
provided by users [211].

Alternatively, it can also manifest as a dense signal, such as
mouse traces [136], [235]. Additionally, it can integrate some
structure, like sequences that encode the order of mentioned
concepts (part-of-speech tags, as in [211]) or visual objects
[152]. The guiding inputs can encapsulate the user’s interest
in object relationships, as exemplified through the use of
verbs and semantic roles to depict activities within the image
and the involvement of objects in these activities [236]–
[239]. Alternatively, using scene graphs generated or selected
by users can also be used [237], [238].

2) Editing of Image Captioning
Sammani et al.’s [240] introduction of image captioning
modification recognizes the existence of repeats and discrep-
ancies in produced captions. In this method, the separation of
the decoding stage into the two separate processes of caption
production—caption generation and caption polishing is em-
phasized. In the last phase, the created captions are fixed of
syntactic mistakes [241].

VII. CHALLENGES AND UNRESOLVED ISSUES
Despite tremendous advances, image captioning faces a num-
ber of hurdles and unresolved issues, necessitating ongoing
research to enhance the subject. These problems highlight
places where present techniques fall short and highlight the
need for innovation to improve the sophistication of image
captioning algorithms.

One of the most difficult challenges is to capture temporal
correlations in image sequences or films in order to provide
coherent and temporally appropriate captions. It is necessary
to improve models in order to effectively incorporate tempo-
ral linkages for dynamic scenes and occurrences. It is critical
for proper captioning to develop ways to account for time-
dependent contextual changes.

A key barrier is the semantic gap between visual content
and textual descriptions. It is still difficult to extract sophis-
ticated semantic features from photographs and present them
coherently in spoken language. Bridging the semantic gap to
generate contextually rich and nuanced captions remains a
challenge. The alignment of visual and verbal representations
is being refined through research.
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Images having ambiguous content, which can have vari-
ous interpretations, provide difficulties for image captioning
models. It is an ongoing concern to resolve ambiguity in
descriptions and guide models to adopt the most contextually
suitable interpretation. More research is needed to improve
models’ ability to handle confusing conditions. Captions for
images frequently lack contextual information, resulting in
descriptions that may not adequately represent relationships
between visual components. Improving contextual compre-
hension in captioning models to account for complex situa-
tions, temporal linkages, and contextual signals is a research
goal that will continue to be pursued. Integrating temporal
data is critical for complete contextualization.

Because of the subjective nature of language and the lack
of commonly established measures, evaluating the quality
of generated captions is difficult. Creating solid evaluation
measures that are aligned with human judgment and capable
of capturing the diversity of appropriate captions is still a
work in progress. Progress in evaluation methodology is
critical for accurate progress assessment. The need for quick
processing makes real-time image captioning difficult, espe-
cially in dynamic or live scenarios. For practical applications,
balancing speed and precision is critical.

Addressing these issues will necessitate a collaborative
and interdisciplinary effort. Continued exploration of novel
techniques, advancements in model architectures, and a bet-
ter understanding of the intricate relationship between visual
and linguistic elements, including temporal dynamics, are
required for image captioning to progress toward greater
accuracy, diversity, and contextual relevance.

VIII. CONCLUSION AND FUTURE DIRECTIONS
This research has offered a thorough examination of the mul-
tidimensional environment of picture captioning, including a
thorough examination of methods, datasets, and evaluation
metrics. This complex tapestry of research demonstrates the
ongoing evolution of strategies and approaches for bridging
the semantic gap between visual material and natural lan-
guage descriptions.

We examined a wide range of image captioning methods,
from early approaches based on hand-crafted features to
the most recent advances in deep learning-based generative
models. The use of attention processes, multi-modal con-
nections, and transformer architectures has greatly increased
the ability to generate coherent and contextually appropriate
captions. This survey serves as a road map for researchers
and practitioners, providing insights regarding methodology
evolution and strengths.

A thorough evaluation of datasets found that they play
a critical role in building and benchmarking picture cap-
tioning models. The survey has highlighted the diversity of
data sources accessible, from pioneering datasets to modern
domain-specific benchmarks. As picture captioning models
progress, the need for diverse and representative datasets
becomes more obvious. The curation of datasets that capture
the complexity and nuances of real-world settings should

be the focus of future research. The survey examined the
various evaluation measures used to assess the performance
of captioning models. This paper attempts to aid researchers
in selecting acceptable evaluation procedures by consider-
ing both established metrics and developing alternatives.
Standardization and consensus on evaluation metrics are
imperative for fostering fair comparisons between different
approaches. Future endeavors should focus on refining exist-
ing metrics and potentially introducing novel measures that
better capture the nuances of caption quality.

The future direction involves investigations into temporal
relationships, real-time captioning, and cross-modal repre-
sentations, all of which offer intriguing avenues for devel-
oping more dynamic and responsive captioning systems.
Collaborative efforts to standardize evaluation methods and
curate varied datasets will act as guiding lights for objective
benchmarking, supporting continual progress in this dynamic
sector. Putting an emphasis on multidisciplinary approaches
and creative solutions will surely be critical in propelling
picture captioning to greater practical relevance and success
in real-world applications.

REFERENCES
[1] J.-Y. Pan, H.-J. Yang, P. Duygulu, and C. Faloutsos, “Automatic image

captioning,” in 2004 IEEE International Conference on Multimedia and
Expo (ICME)(IEEE Cat. No. 04TH8763), vol. 3. IEEE, 2004, pp. 1987–
1990.

[2] A. Ardila, B. Bernal, M. Rosselli et al., “Language and visual perception
associations: meta-analytic connectivity modeling of brodmann area 37,”
Behavioural neurology, vol. 2015, 2015.

[3] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hock-
enmaier, and D. Forsyth, “Every picture tells a story: Generating sen-
tences from images,” in Computer Vision–ECCV 2010: 11th European
Conference on Computer Vision, Heraklion, Crete, Greece, September
5-11, 2010, Proceedings, Part IV 11. Springer, 2010, pp. 15–29.

[4] V. Ordonez, G. Kulkarni, and T. Berg, “Im2text: Describing images
using 1 million captioned photographs,” Advances in neural information
processing systems, vol. 24, 2011.

[5] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato,
and T. Mikolov, “Devise: A deep visual-semantic embedding model,”
Advances in neural information processing systems, vol. 26, 2013.

[6] A. Gupta, Y. Verma, and C. Jawahar, “Choosing linguistics over vision
to describe images,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 26, no. 1, 2012, pp. 606–612.

[7] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic
embeddings with multimodal neural language models,” arXiv preprint
arXiv:1411.2539, 2014.

[8] A. Karpathy, A. Joulin, and L. F. Fei-Fei, “Deep fragment embeddings for
bidirectional image sentence mapping,” Advances in neural information
processing systems, vol. 27, 2014.

[9] B. Z. Yao, X. Yang, L. Lin, M. W. Lee, and S.-C. Zhu, “I2t: Image parsing
to text description,” Proceedings of the IEEE, vol. 98, no. 8, pp. 1485–
1508, 2010.

[10] A. Aker and R. Gaizauskas, “Generating image descriptions using depen-
dency relational patterns,” in Proceedings of the 48th annual meeting of
the association for computational linguistics, 2010, pp. 1250–1258.

[11] Y. Yang, C. Teo, H. Daumé III, and Y. Aloimonos, “Corpus-guided
sentence generation of natural images,” in Proceedings of the 2011
conference on empirical methods in natural language processing, 2011,
pp. 444–454.

[12] S. Li, G. Kulkarni, T. Berg, A. Berg, and Y. Choi, “Composing simple
image descriptions using web-scale n-grams,” in Proceedings of the
fifteenth conference on computational natural language learning, 2011,
pp. 220–228.

[13] M. Mitchell, J. Dodge, A. Goyal, K. Yamaguchi, K. Stratos, X. Han,
A. Mensch, A. Berg, T. Berg, and H. Daumé III, “Midge: Generating

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



image descriptions from computer vision detections,” in Proceedings of
the 13th Conference of the European Chapter of the Association for
Computational Linguistics, 2012, pp. 747–756.

[14] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi, A. C.
Berg, and T. L. Berg, “Babytalk: Understanding and generating simple
image descriptions,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 12, pp. 2891–2903, 2013.

[15] P. Kuznetsova, V. Ordonez, T. L. Berg, and Y. Choi, “Treetalk: Composi-
tion and compression of trees for image descriptions,” Transactions of the
Association for Computational Linguistics, vol. 2, pp. 351–362, 2014.

[16] M. Hodosh, P. Young, and J. Hockenmaier, “Framing image description
as a ranking task: Data, models and evaluation metrics,” Journal of
Artificial Intelligence Research, vol. 47, pp. 853–899, 2013.

[17] N. Sharif, U. Nadeem, S. A. A. Shah, M. Bennamoun, and W. Liu,
“Vision to language: Methods, metrics and datasets,” Machine Learning
Paradigms: Advances in Deep Learning-based Technological Applica-
tions, pp. 9–62, 2020.

[18] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for gen-
erating image descriptions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3128–3137.

[19] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural
image caption generator,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3156–3164.

[20] Z. Gan, C. Gan, X. He, Y. Pu, K. Tran, J. Gao, L. Carin, and L. Deng,
“Semantic compositional networks for visual captioning,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 5630–5639.

[21] M. Najman, “Image captioning with convolutional neural networks,”
2017.

[22] C. Chunseong Park, B. Kim, and G. Kim, “Attend to you: Personalized
image captioning with context sequence memory networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 895–903.

[23] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and
L. Zhang, “Bottom-up and top-down attention for image captioning and
visual question answering,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 6077–6086.

[24] A. Rohrbach, M. Rohrbach, S. Tang, S. Joon Oh, and B. Schiele,
“Generating descriptions with grounded and co-referenced people,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4979–4989.

[25] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[26] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua, “Sca-
cnn: Spatial and channel-wise attention in convolutional networks for
image captioning,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 5659–5667.

[27] M. Cornia, M. Stefanini, L. Baraldi, and R. Cucchiara, “Meshed-memory
transformer for image captioning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 10 578–
10 587.

[28] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through atten-
tion,” in International conference on machine learning. PMLR, 2021,
pp. 10 347–10 357.

[29] A. A. Osman, M. A. W. Shalaby, M. M. Soliman, and K. M. Elsayed,
“A survey on attention-based models for image captioning,” International
Journal of Advanced Computer Science and Applications, vol. 14, no. 2,
2023.

[30] R. Bernardi, R. Cakici, D. Elliott, A. Erdem, E. Erdem, N. Ikizler-Cinbis,
F. Keller, A. Muscat, and B. Plank, “Automatic description generation
from images: A survey of models, datasets, and evaluation measures,”
Journal of Artificial Intelligence Research, vol. 55, pp. 409–442, 2016.

[31] S. Bai and S. An, “A survey on automatic image caption generation,”
Neurocomputing, vol. 311, pp. 291–304, 2018.

[32] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A compre-
hensive survey of deep learning for image captioning,” ACM Computing
Surveys (CsUR), vol. 51, no. 6, pp. 1–36, 2019.

[33] X. Liu, Q. Xu, and N. Wang, “A survey on deep neural network-based
image captioning,” The Visual Computer, vol. 35, no. 3, pp. 445–470,
2019.

[34] H. Sharma, M. Agrahari, S. K. Singh, M. Firoj, and R. K. Mishra, “Image
captioning: a comprehensive survey,” in 2020 International Conference
on Power Electronics & IoT Applications in Renewable Energy and its
Control (PARC). IEEE, 2020, pp. 325–328.

[35] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao,
X. He, M. Mitchell, J. C. Platt et al., “From captions to visual concepts
and back,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 1473–1482.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] J. Gu, G. Wang, J. Cai, and T. Chen, “An empirical study of language
cnn for image captioning,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 1222–1231.

[40] X. Chen and C. Lawrence Zitnick, “Mind’s eye: A recurrent visual
representation for image caption generation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 2422–
2431.

[41] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with
semantic attention,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 4651–4659.

[42] Q. Wu, C. Shen, L. Liu, A. Dick, and A. Van Den Hengel, “What value
do explicit high level concepts have in vision to language problems?”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 203–212.

[43] F. Chen, R. Ji, J. Su, Y. Wu, and Y. Wu, “Structcap: Structured semantic
embedding for image captioning,” in Proceedings of the 25th ACM
international conference on Multimedia, 2017, pp. 46–54.

[44] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-
critical sequence training for image captioning,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
7008–7024.

[45] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing when to look: Adap-
tive attention via a visual sentinel for image captioning,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 375–383.

[46] B. Dai, D. Ye, and D. Lin, “Rethinking the form of latent states in image
captioning,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 282–298.

[47] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[48] X. Chen, L. Ma, W. Jiang, J. Yao, and W. Liu, “Regularizing rnns
for caption generation by reconstructing the past with the present,” in
Proceedings of the IEEE Conference on computer vision and pattern
recognition, 2018, pp. 7995–8003.

[49] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting image captioning
with attributes,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 4894–4902.

[50] Y. Wang, Z. Lin, X. Shen, S. Cohen, and G. W. Cottrell, “Skeleton key:
Image captioning by skeleton-attribute decomposition,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 7272–7281.

[51] H. Ge, Z. Yan, K. Zhang, M. Zhao, and L. Sun, “Exploring overall
contextual information for image captioning in human-like cognitive
style,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 1754–1763.

[52] J. Gu, J. Cai, G. Wang, and T. Chen, “Stack-captioning: Coarse-to-fine
learning for image captioning,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 32, no. 1, 2018.

[53] Z. Yang, Y. Yuan, Y. Wu, W. W. Cohen, and R. R. Salakhutdinov, “Re-
view networks for caption generation,” Advances in neural information
processing systems, vol. 29, 2016.

[54] W. Jiang, L. Ma, Y.-G. Jiang, W. Liu, and T. Zhang, “Recurrent fusion
network for image captioning,” in Proceedings of the European confer-
ence on computer vision (ECCV), 2018, pp. 499–515.

[55] Y. Sugano and A. Bulling, “Seeing with humans: Gaze-assisted neural
image captioning,” arXiv preprint arXiv:1608.05203, 2016.

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[56] H. R. Tavakoli, R. Shetty, A. Borji, and J. Laaksonen, “Paying attention
to descriptions generated by image captioning models,” in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 2487–
2496.

[57] V. Ramanishka, A. Das, J. Zhang, and K. Saenko, “Top-down visual
saliency guided by captions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 7206–7215.

[58] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Paying more attention
to saliency: Image captioning with saliency and context attention,” ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM), vol. 14, no. 2, pp. 1–21, 2018.

[59] S. Chen and Q. Zhao, “Boosted attention: Leveraging human attention
for image captioning,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 68–84.

[60] F. Chen, R. Ji, X. Sun, Y. Wu, and J. Su, “Groupcap: Group-based
image captioning with structured relevance and diversity constraints,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1345–1353.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[62] L. Ke, W. Pei, R. Li, X. Shen, and Y.-W. Tai, “Reflective decoding
network for image captioning,” in Proceedings of the IEEE/CVF inter-
national conference on computer vision, 2019, pp. 8888–8897.

[63] Y. Qin, J. Du, Y. Zhang, and H. Lu, “Look back and predict forward
in image captioning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 8367–8375.

[64] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma et al., “Visual genome: Connect-
ing language and vision using crowdsourced dense image annotations,”
International journal of computer vision, vol. 123, pp. 32–73, 2017.

[65] M. Pedersoli, T. Lucas, C. Schmid, and J. Verbeek, “Areas of attention for
image captioning,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 1242–1250.

[66] Z. Shi, X. Zhou, X. Qiu, and X. Zhu, “Improving image captioning with
better use of captions,” arXiv preprint arXiv:2006.11807, 2020.

[67] X. Yang, K. Tang, H. Zhang, and J. Cai, “Auto-encoding scene graphs
for image captioning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 10 685–10 694.

[68] S. Herdade, A. Kappeler, K. Boakye, and J. Soares, “Image captioning:
Transforming objects into words,” Advances in neural information pro-
cessing systems, vol. 32, 2019.

[69] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dol-
lár, and C. L. Zitnick, “Microsoft coco: Common objects in context,”
in Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer,
2014, pp. 740–755.

[70] M. Alikhani, P. Sharma, S. Li, R. Soricut, and M. Stone, “Clue:
Cross-modal coherence modeling for caption generation,” arXiv preprint
arXiv:2005.00908, 2020.

[71] F. Liu, Y. Liu, X. Ren, X. He, and X. Sun, “Aligning visual regions
and textual concepts for semantic-grounded image representations,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[72] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International con-
ference on machine learning. PMLR, 2021, pp. 8748–8763.

[73] J. Aneja, A. Deshpande, and A. G. Schwing, “Convolutional image
captioning,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 5561–5570.

[74] L. Guo, J. Liu, J. Tang, J. Li, W. Luo, and H. Lu, “Aligning linguistic
words and visual semantic units for image captioning,” in Proceedings of
the 27th ACM international conference on multimedia, 2019, pp. 765–
773.

[75] X. Jia, E. Gavves, B. Fernando, and T. Tuytelaars, “Guiding the long-
short term memory model for image caption generation,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 2407–
2415.

[76] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
2625–2634.

[77] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[78] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[79] T. Yao, Y. Pan, Y. Li, and T. Mei, “Hierarchy parsing for image cap-
tioning,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 2621–2629.

[80] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[81] X. Yang, H. Zhang, and J. Cai, “Learning to collocate neural modules
for image captioning,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 4250–4260.

[82] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[83] L. Huang, W. Wang, Y. Xia, and J. Chen, “Adaptively aligned image
captioning via adaptive attention time,” Advances in neural information
processing systems, vol. 32, 2019.

[84] L. Wang, Z. Bai, Y. Zhang, and H. Lu, “Show, recall, and tell: Image cap-
tioning with recall mechanism,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 07, 2020, pp. 12 176–12 183.

[85] Z.-J. Zha, D. Liu, H. Zhang, Y. Zhang, and F. Wu, “Context-aware visual
policy network for fine-grained image captioning,” IEEE transactions on
pattern analysis and machine intelligence, vol. 44, no. 2, pp. 710–722,
2019.

[86] S. He, W. Liao, H. R. Tavakoli, M. Yang, B. Rosenhahn, and N. Pugeault,
“Image captioning through image transformer,” in Proceedings of the
Asian conference on computer vision, 2020.

[87] J. Ji, Y. Luo, X. Sun, F. Chen, G. Luo, Y. Wu, Y. Gao, and R. Ji,
“Improving image captioning by leveraging intra-and inter-layer global
representation in transformer network,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 35, no. 2, 2021, pp. 1655–1663.

[88] Z.-c. Fei, “Fast image caption generation with position alignment,” arXiv
preprint arXiv:1912.06365, 2019.

[89] G. Li, L. Zhu, P. Liu, and Y. Yang, “Entangled transformer for image
captioning,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2019, pp. 8928–8937.

[90] X. Hu, Z. Gan, J. Wang, Z. Yang, Z. Liu, Y. Lu, and L. Wang, “Scaling up
vision-language pre-training for image captioning,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2022,
pp. 17 980–17 989.

[91] Z. Fei, “Iterative back modification for faster image captioning,” in
Proceedings of the 28th ACM International Conference on Multimedia,
2020, pp. 3182–3190.

[92] L. Huang, W. Wang, J. Chen, and X.-Y. Wei, “Attention on attention
for image captioning,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 4634–4643.

[93] Y. Pan, T. Yao, Y. Li, and T. Mei, “X-linear attention networks for image
captioning,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 10 971–10 980.

[94] H. Jiang, I. Misra, M. Rohrbach, E. Learned-Miller, and X. Chen, “In
defense of grid features for visual question answering,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 10 267–10 276.

[95] R. Mokady, A. Hertz, and A. H. Bermano, “Clipcap: Clip prefix for image
captioning,” arXiv preprint arXiv:2111.09734, 2021.

[96] L. Guo, J. Liu, X. Zhu, P. Yao, S. Lu, and H. Lu, “Normalized and
geometry-aware self-attention network for image captioning,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 10 327–10 336.

[97] F. Liu, X. Ren, X. Wu, S. Ge, W. Fan, Y. Zou, and X. Sun, “Prophet
attention: Predicting attention with future attention,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1865–1876, 2020.

[98] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[99] P. Zhang, X. Li, X. Hu, J. Yang, L. Zhang, L. Wang, Y. Choi, and J. Gao,
“Vinvl: Revisiting visual representations in vision-language models,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 5579–5588.

[100] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

22 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[101] L. Guo, J. Liu, X. Zhu, and H. Lu, “Fast sequence generation with multi-
agent reinforcement learning,” arXiv preprint arXiv:2101.09698, 2021.

[102] P. Koehn, Statistical machine translation. Cambridge University Press,
2009.

[103] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level train-
ing with recurrent neural networks,” arXiv preprint arXiv:1511.06732,
2015.

[104] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, pp. 229–
256, 1992.

[105] J. Lu, J. Yang, D. Batra, and D. Parikh, “Neural baby talk,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7219–7228.

[106] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks,” Advances
in neural information processing systems, vol. 32, 2019.

[107] X. Yang, H. Zhang, D. Jin, Y. Liu, C.-H. Wu, J. Tan, D. Xie, J. Wang, and
X. Wang, “Fashion captioning: Towards generating accurate descriptions
with semantic rewards,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII
16. Springer, 2020, pp. 1–17.

[108] S. Reed, Z. Akata, H. Lee, and B. Schiele, “Learning deep representations
of fine-grained visual descriptions,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp. 49–58.

[109] A. F. Biten, L. Gomez, M. Rusinol, and D. Karatzas, “Good news,
everyone! context driven entity-aware captioning for news images,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 466–12 475.

[110] L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Grounding visual
explanations,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 264–279.

[111] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Gen-
erative adversarial text to image synthesis,” in International conference
on machine learning. PMLR, 2016, pp. 1060–1069.

[112] J. Pont-Tuset, J. Uijlings, S. Changpinyo, R. Soricut, and V. Ferrari,
“Connecting vision and language with localized narratives,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part V 16. Springer, 2020, pp. 647–664.

[113] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever, “Zero-shot text-to-image generation,” in International
Conference on Machine Learning. PMLR, 2021, pp. 8821–8831.

[114] L. Guo, J. Liu, X. Zhu, X. He, J. Jiang, and H. Lu, “Non-autoregressive
image captioning with counterfactuals-critical multi-agent learning,”
arXiv preprint arXiv:2005.04690, 2020.

[115] M. Cornia, L. Baraldi, G. Fiameni, and R. Cucchiara, “Universal cap-
tioner: Long-tail vision-and-language model training through content-
style separation,” arXiv preprint arXiv:2111.12727, vol. 1, no. 2, p. 4,
2021.

[116] H. Tan and M. Bansal, “Lxmert: Learning cross-modality encoder repre-
sentations from transformers,” arXiv preprint arXiv:1908.07490, 2019.

[117] Z. Wang, J. Yu, A. W. Yu, Z. Dai, Y. Tsvetkov, and Y. Cao, “Simvlm:
Simple visual language model pretraining with weak supervision,” arXiv
preprint arXiv:2108.10904, 2021.

[118] S. Changpinyo, P. Sharma, N. Ding, and R. Soricut, “Conceptual 12m:
Pushing web-scale image-text pre-training to recognize long-tail visual
concepts,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 3558–3568.

[119] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep
captioning with multimodal recurrent neural networks (m-rnn),” arXiv
preprint arXiv:1412.6632, 2014.

[120] D. Gurari, Y. Zhao, M. Zhang, and N. Bhattacharya, “Captioning images
taken by people who are blind,” in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVII 16. Springer, 2020, pp. 417–434.

[121] L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao, “Unified
vision-language pre-training for image captioning and vqa,” in Proceed-
ings of the AAAI conference on artificial intelligence, vol. 34, no. 07,
2020, pp. 13 041–13 049.

[122] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona, “Caltech-ucsd birds 200. california institute of technology,”
CNS-TR-2010-001, Tech. Rep., 2010.

[123] S. Shen, L. H. Li, H. Tan, M. Bansal, A. Rohrbach, K.-W. Chang, Z. Yao,
and K. Keutzer, “How much can clip benefit vision-and-language tasks?”
arXiv preprint arXiv:2107.06383, 2021.

[124] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in 2008 Sixth Indian conference on computer
vision, graphics & image processing. IEEE, 2008, pp. 722–729.

[125] A. Ramisa, F. Yan, F. Moreno-Noguer, and K. Mikolajczyk, “Break-
ingnews: Article annotation by image and text processing,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 40, no. 5, pp.
1072–1085, 2017.

[126] T.-H. Chen, Y.-H. Liao, C.-Y. Chuang, W.-T. Hsu, J. Fu, and M. Sun,
“Show, adapt and tell: Adversarial training of cross-domain image cap-
tioner,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 521–530.

[127] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and
T. Darrell, “Generating visual explanations,” in Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14. Springer, 2016, pp. 3–19.

[128] O. Sidorov, R. Hu, M. Rohrbach, and A. Singh, “Textcaps: a dataset for
image captioning with reading comprehension,” in Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part II 16. Springer, 2020, pp. 742–758.

[129] J. Kasai, K. Sakaguchi, L. Dunagan, J. Morrison, R. L. Bras, Y. Choi,
and N. A. Smith, “Transparent human evaluation for image captioning,”
arXiv preprint arXiv:2111.08940, 2021.

[130] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments,” in Proceedings of the
acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization, 2005, pp. 65–72.

[131] N. Sharif, L. White, M. Bennamoun, and S. A. A. Shah, “Nneval: Neural
network based evaluation metric for image captioning,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 37–53.

[132] Y. Cui, G. Yang, A. Veit, X. Huang, and S. Belongie, “Learning to
evaluate image captioning,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 5804–5812.

[133] O. Caglayan, P. Madhyastha, and L. Specia, “Curious case of lan-
guage generation evaluation metrics: A cautionary tale,” arXiv preprint
arXiv:2010.13588, 2020.

[134] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,
D. Borth, and L.-J. Li, “Yfcc100m: The new data in multimedia re-
search,” Communications of the ACM, vol. 59, no. 2, pp. 64–73, 2016.

[135] K. Srinivasan, K. Raman, J. Chen, M. Bendersky, and M. Najork, “Wit:
Wikipedia-based image text dataset for multimodal multilingual machine
learning,” in Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, 2021, pp.
2443–2449.

[136] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-
H. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” in International
conference on machine learning. PMLR, 2021, pp. 4904–4916.

[137] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Improved image
captioning via policy gradient optimization of spider,” in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 873–
881.

[138] R. Shetty, M. Rohrbach, L. Anne Hendricks, M. Fritz, and B. Schiele,
“Speaking the same language: Matching machine to human captions by
adversarial training,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 4135–4144.

[139] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic
propositional image caption evaluation,” in Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part V 14. Springer, 2016, pp. 382–398.

[140] J. Gao, S. Wang, S. Wang, S. Ma, and W. Gao, “Self-critical n-step train-
ing for image captioning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 6300–6308.

[141] K. Desai and J. Johnson, “Virtex: Learning visual representations from
textual annotations,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 11 162–11 173.

[142] A. Rohrbach, L. A. Hendricks, K. Burns, T. Darrell, and K. Saenko, “Ob-
ject hallucination in image captioning,” arXiv preprint arXiv:1809.02156,
2018.

[143] M. Jiang, J. Hu, Q. Huang, L. Zhang, J. Diesner, and J. Gao, “Reo-
relevance, extraness, omission: A fine-grained evaluation for image cap-
tioning,” arXiv preprint arXiv:1909.02217, 2019.

[144] Z. Wang, B. Feng, K. Narasimhan, and O. Russakovsky, “Towards unique
and informative captioning of images,” in Computer Vision–ECCV 2020:

VOLUME 4, 2016 23

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part VII 16. Springer, 2020, pp. 629–644.

[145] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embed-
dings to document distances,” in International conference on machine
learning. PMLR, 2015, pp. 957–966.

[146] Q. Wang, J. Wan, and A. B. Chan, “On diversity in image captioning:
Metrics and methods,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 44, no. 2, pp. 1035–1049, 2020.

[147] M. Kilickaya, A. Erdem, N. Ikizler-Cinbis, and E. Erdem, “Re-
evaluating automatic metrics for image captioning,” arXiv preprint
arXiv:1612.07600, 2016.

[148] M. Cornia, L. Baraldi, and R. Cucchiara, “Show, control and tell: A
framework for generating controllable and grounded captions,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8307–8316.

[149] R. Bigazzi, F. Landi, M. Cornia, S. Cascianelli, L. Baraldi, and R. Cuc-
chiara, “Explore and explain: self-supervised navigation and recounting,”
in 2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 1152–1159.

[150] H. Lee, S. Yoon, F. Dernoncourt, D. S. Kim, T. Bui, and K. Jung,
“Vilbertscore: Evaluating image caption using vision-and-language bert,”
in Proceedings of the First Workshop on Evaluation and Comparison of
NLP Systems, 2020, pp. 34–39.

[151] Y. Yi, H. Deng, and J. Hu, “Improving image captioning evaluation by
considering inter references variance,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020, pp.
985–994.

[152] S. Wang, Z. Yao, R. Wang, Z. Wu, and X. Chen, “Faier: Fidelity
and adequacy ensured image caption evaluation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14 050–14 059.

[153] Y. Luo, J. Ji, X. Sun, L. Cao, Y. Wu, F. Huang, C.-W. Lin, and R. Ji,
“Dual-level collaborative transformer for image captioning,” in Proceed-
ings of the AAAI conference on artificial intelligence, vol. 35, no. 3,
2021, pp. 2286–2293.

[154] H. Lee, S. Yoon, F. Dernoncourt, T. Bui, and K. Jung, “Umic: An
unreferenced metric for image captioning via contrastive learning,” arXiv
preprint arXiv:2106.14019, 2021.

[155] E. Van Miltenburg, D. Elliott, and P. Vossen, “Measuring the diversity of
automatic image descriptions,” in Proceedings of the 27th International
Conference on Computational Linguistics, 2018, pp. 1730–1741.

[156] Q. Wang and A. B. Chan, “Describing like humans: on diversity in image
captioning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4195–4203.

[157] B. Dai, S. Fidler, and D. Lin, “A neural compositional paradigm for
image captioning,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[158] B. Dai, S. Fidler, R. Urtasun, and D. Lin, “Towards diverse and natural
image descriptions via a conditional gan,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2970–2979.

[159] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675,
2019.

[160] I. J. Unanue, J. Parnell, and M. Piccardi, “Berttune: Fine-tuning neural
machine translation with bertscore,” arXiv preprint arXiv:2106.02208,
2021.

[161] M. Jiang, Q. Huang, L. Zhang, X. Wang, P. Zhang, Z. Gan, J. Diesner, and
J. Gao, “Tiger: Text-to-image grounding for image caption evaluation,”
arXiv preprint arXiv:1909.02050, 2019.

[162] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked cross attention
for image-text matching,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 201–216.

[163] J. Hessel, A. Holtzman, M. Forbes, R. L. Bras, and Y. Choi, “Clipscore:
A reference-free evaluation metric for image captioning,” arXiv preprint
arXiv:2104.08718, 2021.

[164] L. A. Hendricks, S. Venugopalan, M. Rohrbach, R. Mooney, K. Saenko,
and T. Darrell, “Deep compositional captioning: Describing novel object
categories without paired training data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 1–10.

[165] T. Yao, Y. Pan, Y. Li, and T. Mei, “Incorporating copying mechanism in
image captioning for learning novel objects,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 6580–
6588.

[166] S. Venugopalan, L. Anne Hendricks, M. Rohrbach, R. Mooney, T. Dar-
rell, and K. Saenko, “Captioning images with diverse objects,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 5753–5761.

[167] H. Agrawal, K. Desai, Y. Wang, X. Chen, R. Jain, M. Johnson, D. Batra,
D. Parikh, S. Lee, and P. Anderson, “Nocaps: Novel object captioning
at scale,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 8948–8957.

[168] Y. Li, T. Yao, Y. Pan, H. Chao, and T. Mei, “Pointing novel objects
in image captioning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 12 497–12 506.

[169] Y. Wu, L. Zhu, L. Jiang, and Y. Yang, “Decoupled novel object captioner,”
in Proceedings of the 26th ACM international conference on Multimedia,
2018, pp. 1029–1037.

[170] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Guided open vo-
cabulary image captioning with constrained beam search,” arXiv preprint
arXiv:1612.00576, 2016.

[171] X. Hu, X. Yin, K. Lin, L. Zhang, J. Gao, L. Wang, and Z. Liu, “Vivo: Vi-
sual vocabulary pre-training for novel object captioning,” in proceedings
of the AAAI conference on artificial intelligence, vol. 35, no. 2, 2021, pp.
1575–1583.

[172] J. Gu, S. Joty, J. Cai, and G. Wang, “Unpaired image captioning by
language pivoting,” in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 503–519.

[173] J. Gu, S. Joty, J. Cai, H. Zhao, X. Yang, and G. Wang, “Unpaired image
captioning via scene graph alignments,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 10 323–10 332.

[174] D. Guo, Y. Wang, P. Song, and M. Wang, “Recurrent relational
memory network for unsupervised image captioning,” arXiv preprint
arXiv:2006.13611, 2020.

[175] D.-J. Kim, J. Choi, T.-H. Oh, and I. S. Kweon, “Image captioning
with very scarce supervised data: Adversarial semi-supervised learning
approach,” arXiv preprint arXiv:1909.02201, 2019.

[176] H. Ben, Y. Pan, Y. Li, T. Yao, R. Hong, M. Wang, and T. Mei, “Unpaired
image captioning with semantic-constrained self-learning,” IEEE Trans-
actions on Multimedia, vol. 24, pp. 904–916, 2021.

[177] R. Del Chiaro, B. Twardowski, A. Bagdanov, and J. Van de Weijer, “Ratt:
Recurrent attention to transient tasks for continual image captioning,”
Advances in Neural Information Processing Systems, vol. 33, pp. 16 736–
16 748, 2020.

[178] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully convolutional
localization networks for dense captioning,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 4565–
4574.

[179] L. Yang, K. Tang, J. Yang, and L.-J. Li, “Dense captioning with joint
inference and visual context,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2193–2202.

[180] X. Li, S. Jiang, and J. Han, “Learning object context for dense caption-
ing,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, no. 01, 2019, pp. 8650–8657.

[181] G. Yin, L. Sheng, B. Liu, N. Yu, X. Wang, and J. Shao, “Context and
attribute grounded dense captioning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6241–6250.

[182] D.-J. Kim, J. Choi, T.-H. Oh, and I. S. Kweon, “Dense relational
captioning: Triple-stream networks for relationship-based captioning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 6271–6280.

[183] Y. Mao, C. Zhou, X. Wang, and R. Li, “Show and tell more: Topic-
oriented multi-sentence image captioning.” in IJCAI, 2018, pp. 4258–
4264.

[184] M. Chatterjee and A. G. Schwing, “Diverse and coherent paragraph
generation from images,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 729–744.

[185] J. Krause, J. Johnson, R. Krishna, and L. Fei-Fei, “A hierarchical ap-
proach for generating descriptive image paragraphs,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 317–325.

[186] X. Liang, Z. Hu, H. Zhang, C. Gan, and E. P. Xing, “Recurrent topic-
transition gan for visual paragraph generation,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 3362–3371.

[187] T. Yao, Y. Pan, Y. Li, and T. Mei, “Exploring visual relationship for image
captioning,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 684–699.

24 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[188] Y. Luo, Z. Huang, Z. Zhang, Z. Wang, J. Li, and Y. Yang, “Curiosity-
driven reinforcement learning for diverse visual paragraph generation,” in
Proceedings of the 27th ACM International Conference on Multimedia,
2019, pp. 2341–2350.

[189] Z. Yang, Y. Lu, J. Wang, X. Yin, D. Florencio, L. Wang, C. Zhang,
L. Zhang, and J. Luo, “Tap: Text-aware pre-training for text-vqa and text-
caption,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2021, pp. 8751–8761.

[190] J. Wang, J. Tang, and J. Luo, “Multimodal attention with image text
spatial relationship for ocr-based image captioning,” in Proceedings of
the 28th ACM International Conference on Multimedia, 2020, pp. 4337–
4345.

[191] J. Wang, J. Tang, M. Yang, X. Bai, and J. Luo, “Improving ocr-based im-
age captioning by incorporating geometrical relationship,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 1306–1315.

[192] Q. Zhu, C. Gao, P. Wang, and Q. Wu, “Simple is not easy: A simple
strong baseline for textvqa and textcaps,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 3608–
3615.

[193] G. Xu, S. Niu, M. Tan, Y. Luo, Q. Du, and Q. Wu, “Towards accurate
text-based image captioning with content diversity exploration,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 12 637–12 646.

[194] H. Jhamtani and T. Berg-Kirkpatrick, “Learning to describe differences
between pairs of similar images,” arXiv preprint arXiv:1808.10584, 2018.

[195] D. H. Park, T. Darrell, and A. Rohrbach, “Robust change captioning,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 4624–4633.

[196] X. Shi, X. Yang, J. Gu, S. Joty, and J. Cai, “Finding it at another
side: A viewpoint-adapted matching encoder for change captioning,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16. Springer, 2020,
pp. 574–590.

[197] Q. Huang, Y. Liang, J. Wei, Y. Cai, H. Liang, H.-f. Leung, and Q. Li,
“Image difference captioning with instance-level fine-grained feature
representation,” IEEE transactions on multimedia, vol. 24, pp. 2004–
2017, 2021.

[198] H. Kim, J. Kim, H. Lee, H. Park, and G. Kim, “Agnostic change
captioning with cycle consistency,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 2095–2104.

[199] M. Hosseinzadeh and Y. Wang, “Image change captioning by learning
from an auxiliary task,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 2725–2734.

[200] A. Vijayakumar, M. Cogswell, R. Selvaraju, Q. Sun, S. Lee, D. Cran-
dall, and D. Batra, “Diverse beam search for improved description of
complex scenes,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[201] B. Dai and D. Lin, “Contrastive learning for image captioning,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[202] L. Liu, J. Tang, X. Wan, and Z. Guo, “Generating diverse and de-
scriptive image captions using visual paraphrases,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
4240–4249.

[203] L. Wang, A. Schwing, and S. Lazebnik, “Diverse and accurate image
description using a variational auto-encoder with an additive gaussian
encoding space,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[204] J. Aneja, H. Agrawal, D. Batra, and A. Schwing, “Sequential latent
spaces for modeling the intention during diverse image captioning,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 4261–4270.

[205] F. Chen, R. Ji, J. Ji, X. Sun, B. Zhang, X. Ge, Y. Wu, F. Huang,
and Y. Wang, “Variational structured semantic inference for diverse
image captioning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[206] S. Mahajan and S. Roth, “Diverse image captioning with context-object
split latent spaces,” Advances in Neural Information Processing Systems,
vol. 33, pp. 3613–3624, 2020.

[207] A. Deshpande, J. Aneja, L. Wang, A. G. Schwing, and D. Forsyth, “Fast,
diverse and accurate image captioning guided by part-of-speech,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019, pp. 10 695–10 704.

[208] D. Elliott, S. Frank, and E. Hasler, “Multilingual image description with
neural sequence models,” arXiv preprint arXiv:1510.04709, 2015.

[209] X. Li, C. Xu, X. Wang, W. Lan, Z. Jia, G. Yang, and J. Xu, “Coco-
cn for cross-lingual image tagging, captioning, and retrieval,” IEEE
Transactions on Multimedia, vol. 21, no. 9, pp. 2347–2360, 2019.

[210] T. Miyazaki and N. Shimizu, “Cross-lingual image caption generation,”
in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2016, pp. 1780–
1790.

[211] D. Elliott, S. Frank, K. Sima’an, and L. Specia, “Multi30k: Multilingual
english-german image descriptions,” arXiv preprint arXiv:1605.00459,
2016.

[212] W. Lan, X. Li, and J. Dong, “Fluency-guided cross-lingual image cap-
tioning,” in Proceedings of the 25th ACM international conference on
Multimedia, 2017, pp. 1549–1557.

[213] Y. Song, S. Chen, Y. Zhao, and Q. Jin, “Unpaired cross-lingual image
caption generation with self-supervised rewards,” in Proceedings of the
27th ACM international conference on multimedia, 2019, pp. 784–792.

[214] B. Jing, P. Xie, and E. Xing, “On the automatic generation of medical
imaging reports,” arXiv preprint arXiv:1711.08195, 2017.

[215] F. Liu, X. Wu, S. Ge, W. Fan, and Y. Zou, “Exploring and distilling poste-
rior and prior knowledge for radiology report generation,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 13 753–13 762.

[216] X. Yang, M. Ye, Q. You, and F. Ma, “Writing by memorizing: Hi-
erarchical retrieval-based medical report generation,” arXiv preprint
arXiv:2106.06471, 2021.

[217] Z. Bai, Y. Nakashima, and N. Garcia, “Explain me the painting: Multi-
topic knowledgeable art description generation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
5422–5432.

[218] Y. Feng and M. Lapata, “Automatic caption generation for news images,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 4, pp. 797–812, 2012.

[219] A. Tran, A. Mathews, and L. Xie, “Transform and tell: Entity-aware
news image captioning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 13 035–13 045.

[220] F. Liu, Y. Wang, T. Wang, and V. Ordonez, “Visual news: Benchmark and
challenges in news image captioning,” arXiv preprint arXiv:2010.03743,
2020.

[221] X. Yang, S. Karaman, J. Tetreault, and A. Jaimes, “Journalistic guidelines
aware news image captioning,” arXiv preprint arXiv:2109.02865, 2021.

[222] S. Wu, J. Wieland, O. Farivar, and J. Schiller, “Automatic alt-text:
Computer-generated image descriptions for blind users on a social net-
work service,” in proceedings of the 2017 ACM conference on computer
supported cooperative work and social computing, 2017, pp. 1180–1192.

[223] C. C. Park, B. Kim, and G. Kim, “Towards personalized image captioning
via multimodal memory networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 4, pp. 999–1012, 2018.

[224] W. Zhang, Y. Ying, P. Lu, and H. Zha, “Learning long-and short-term
user literal-preference with multimodal hierarchical transformer network
for personalized image caption,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 05, 2020, pp. 9571–9578.

[225] C. Gan, Z. Gan, X. He, J. Gao, and L. Deng, “Stylenet: Generating attrac-
tive visual captions with styles,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 3137–3146.

[226] A. Mathews, L. Xie, and X. He, “Semstyle: Learning to generate stylised
image captions using unaligned text,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 8591–8600.

[227] L. Guo, J. Liu, P. Yao, J. Li, and H. Lu, “Mscap: Multi-style image
captioning with unpaired stylized text,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4204–4213.

[228] W. Zhao, X. Wu, and X. Zhang, “Memcap: Memorizing style knowledge
for image captioning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 984–12 992.

[229] K. Shuster, S. Humeau, H. Hu, A. Bordes, and J. Weston, “Engaging
image captioning via personality,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
12 516–12 526.

[230] Y. Zheng, Y. Li, and S. Wang, “Intention oriented image captions with
guiding objects,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 8395–8404.

VOLUME 4, 2016 25

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[231] Z. Meng, L. Yu, N. Zhang, T. L. Berg, B. Damavandi, V. Singh, and
A. Bearman, “Connecting what to say with where to look by modeling
human attention traces,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 12 679–12 688.

[232] L. Chen, Z. Jiang, J. Xiao, and W. Liu, “Human-like controllable image
captioning with verb-specific semantic roles,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 16 846–16 856.

[233] S. Chen, Q. Jin, P. Wang, and Q. Wu, “Say as you wish: Fine-grained
control of image caption generation with abstract scene graphs,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 9962–9971.

[234] Y. Zhong, L. Wang, J. Chen, D. Yu, and Y. Li, “Comprehensive image
captioning via scene graph decomposition,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XIV 16. Springer, 2020, pp. 211–229.

[235] C. Deng, N. Ding, M. Tan, and Q. Wu, “Length-controllable image cap-
tioning,” in Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16. Springer,
2020, pp. 712–729.

[236] F. Sammani and L. Melas-Kyriazi, “Show, edit and tell: a framework for
editing image captions,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 4808–4816.

[237] M. Hodosh and J. Hockenmaier, “Focused evaluation for image descrip-
tion with binary forced-choice tasks,” in Proceedings of the 5th Workshop
on Vision and Language, 2016, pp. 19–28.

[238] H. Xie, T. Sherborne, A. Kuhnle, and A. Copestake, “Going beneath the
surface: Evaluating image captioning for grammaticality, truthfulness and
diversity,” arXiv preprint arXiv:1912.08960, 2019.

[239] I. Lasri, A. Riadsolh, and M. Elbelkacemi, “Facial emotion recognition of
deaf and hard-of-hearing students for engagement detection using deep
learning,” Education and Information Technologies, vol. 28, no. 4, pp.
4069–4092, 2023.

[240] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng,
and J. Liu, “Uniter: Universal image-text representation learning,” in
European conference on computer vision. Springer, 2020, pp. 104–120.

[241] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in International conference on machine learning. PMLR,
2017, pp. 3319–3328.

AZHAR JAMIL is currently pursuing a MS degree
from Barani Institute of Information Technology,
PMAS-Arid Agriculture University, Rawalpindi,
Pakistan. His research interests include Artificial
Intelligence, Neuroscience, Behavioral Data Mod-
eling & Prescriptive Analytics, Data Visualiza-
tion, Explority Data Analytics, Big Data Solution
Engineering, Data Mining, Opinion Mining and
Process Mining.

SAIF UR REHMAN is currently working as
an Assistant Professor at University Institute of
Information Technology, PMAS-Arid Agriculture
University Rawalpindi, Pakistan. His research in-
terests have been Artificial Intelligence, Machine
Learning Data Mining, Graph Mining and Social
Network Analysis.

KHALID MAHMOOD received his PhD degree in
Computer Science in 2020 from Gomal Univer-
sity, D.I.Khan, Pakistan. Currently he is working
as a faculty member in Institute of Computing and
Information Technology (ICIT), Gomal Univer-
sity, D.I.Khan. His research interests are focused
around Machine Learning, Deep Learning, Senti-
ment Analysis and Opinion Mining, Algorithms,
and Information Security.

MONICA GRACIA VILLAR is working at Uni-
versidad Europea del Atlántico. Isabel Torres 21,
39011 Santander, Spain. She is also affiliated with
Universidade Internacional do Cuanza. Cuito, Bié,
Angola and Universidad de La Romana. La Ro-
mana, República Dominicana

THOMAS PROLA is working at Universidad
Europea del Atlántico. Isabel Torres 21, 39011
Santander, Spain. He is also affiliated with Uni-
versidad Internacional Iberoamericana Campeche
24560, México and Universidad Internacional
Iberoamericana Arecibo, Puerto Rico 00613,
USA.

ISABEL DE LA TORRE-DÍEZ is currently a
Professor with the Department of Signal The-
ory and Communications and Telematic Engi-
neering, University of Valladolid, Spain, where
she is also the Leader of the GTe Research
Group (http://sigte.tel.uva.es). Her research inter-
ests include design, development, and evaluation
of telemedicine applications, services and sys-
tems, e-health, m-health, electronic health records
(EHRs), EHRs standards, biosensors, cloud and

fog computing, data mining, quality of service (QoS), and quality of ex-
perience (QoE) applied to the health field.

26 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MD ABDUS SAMAD (Member, IEEE) received
the Ph.D. degree in information and communica-
tion engineering from Chosun University, South
Korea. He worked as an Assistant Professor at the
Department of Electronics and Telecommunica-
tion Engineering, International Islamic University
Chittagong, Chattogram, Bangladesh, from 2013
to 2017. He has been working as a research pro-
fessor at the Department of Information and Com-
munication Engineering at Yeungnam University,

South Korea. His research interests include signal processing, antenna
design, electromagnetic wave propagation, applications of artificial neural
networks, and millimeter-wave propagation by interference and atmospheric
causes for 5G and beyond wireless networks. He won the Prestigious Korean
Government Scholarship (GKS) for his doctoral study.

IMRAN ASHRAF received his Ph.D. in Infor-
mation and Communication Engineering from Ye-
ungnam University, South Korea in 2018, and
the M.S. degree in computer science from the
Blekinge Institute of Technology, Karlskrona,
Sweden, in 2010 with distinction. He has worked
as a postdoctoral fellow at Yeungnam University,
as well. He is currently working as an Assistant
Professor at the Information and Communication
Engineering Department, Yeungnam University,

Gyeongsan, South Korea. His research areas include positioning using next-
generation networks, communication in 5G and beyond, location-based
services in wireless communication, smart sensors (LIDAR) for smart cars,
and data analytics.

VOLUME 4, 2016 27

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3365528

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


